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Abstract. Big data methods prevail in the biomedical domain lead-
ing to effective and scalable data-driven approaches. Biomedical data
are known for their ultra-high dimensionality, especially the ones coming
from molecular biology experiments. This property is also included in the
emerging technique of single-cell RNA-sequencing (scRNA-seq), where
we obtain sequence information from individual cells. A reliable way to
uncover their complexity is by using Machine Learning approaches, in-
cluding dimensional reduction and feature selection methods. Although
the first choice has had remarkable progress in scRNA-seq data, only
the latter can offer deeper interpretability at the gene level since it high-
lights the dominant gene features in the given data. Towards tackling
this challenge, we propose a feature selection framework that utilizes
genetic optimization principles and identifies low-dimensional combina-
tions of gene lists in order to enhance classification performance of any
off-the-shelf classifier (e.g., LDA or SVM). Our intuition is that by iden-
tifying an optimal genes subset, we can enhance the prediction power
of scRNA-seq data even if these genes are unrelated to each other. We
showcase our proposed framework’s effectiveness in two real scRNA-seq
experiments with gene dimensions up to 36708. Our framework can iden-
tify very low-dimensional subsets of genes (less than 200) while boosting
the classifiers’ performance. Finally, we provide a biological interpreta-
tion of the selected genes, thus providing evidence of our method’s utility
towards explainable artificial intelligence.

Keywords: Feature Selection · Optimization · single-cell RNA-seq ·
High-dimensional data.

1 Introduction

Almost two decades ago, the Human Genome Project [11] was completed, where
the human genome was analyzed, offering the complete set of genetic informa-
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tion. The evolution of DNA sequencing from this point has undoubtedly brought
about a great revolution in the field of biomedicine [29]. Although new technolo-
gies and analysis tools are constantly emerging, their experimental data have
ultra-high dimensionality hindering success of traditional methods [8]. Hence,
data mining approaches in such data create several computational challenges
that novel or updated existing computational methodologies can address. In-
dicatively, a gene expression experiment includes each sample measurements for
the entire genome, which contains tens of thousands of genes.

Meanwhile, classification in gene expression profiles is a longstanding re-
search field with remarkable progress in complex disease identification, and
treatment [13]. Started with data from the microarrays high-throughput tech-
nology [6] and continued with sequencing data [35]. We are now in the single-cell
sequencing era, which allows biological information to be extracted from indi-
vidual cells offering a deeper analysis at the cellular level. An indicative under-
case transcriptomics study has gene measurements simultaneously for the entire
genome isolating hundreds or thousands or even millions of cells in recent years.
Given that we obtain measurements of tens of thousands of genes for each cell, in
the computational perspective, we have to manage single-cell RNA-sequencing
(scRNA-seq) data with ultra-high complexity.

Several single-cell RNA-seq data challenges are addressed through classifi-
cation methods under the Machine Learning family [26]. These methods shed
light on various biological issues such as the new cell types of identification [27],
the cellular heterogeneity dissection [16], the cell cycle prediction [28], the cell
sub-populations [7], the cells classification [25] and much more [33]. Despite the
remarkable progress and promising results in the above challenges, the increasing
scRNA-seq data generation, and the related technologies improvements creates
new challenges and the need for novel classification methods under the perspec-
tive of supervised learning.

The nature of scRNA-seq technology, that is to examine individual cells from
specific tissues, creates a quite sparse counts matrix since for every cell usually
exists a high fraction of genes which are not informative [31]. Two appropri-
ate ways to deal with this inherent particularity are dimensionality reduction
techniques and feature selection methods. Dimension reduction techniques in
scRNA-seq data aim to transfer the original RD cell’s space, where D is the genes
expression profiles, to a lower-dimensional RK space, with K � D. Such meth-
ods have gained ground in recent years with promising results in visualization
[34] as in classification performance tasks [26]. Indicatively, the t -distributed
stochastic neighbor embedding [21] and uniform manifold approximation and
projection [5] techniques are usually applied in scRNA-seq data to obtain low-
dimensional embedding offering a better visualization to uncover the relationship
among cells and their categories.

However, their major drawback is that the reduced-dimensional projected
space does not contain information about each gene since the original space
has been transformed. It does not allow us a further biological analysis and a
deeper interpretation of a given case under study (disease, biological process).
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In gene expressions data, feature selection or variable selection is selecting a
subset of genes for model construction or results interpretation. It has been
shown that feature selection in such data improves the classification performance
and offers the potential for a better data interpretation in a given study since
we know its dominant and redundant genes (features), which are related to
the various class separation. There are numerous feature selection algorithms
with promising results in gene expression data [20, 1, 12]. In scRNA-seq data,
feature selection methods aim to identify uninformative genes (features) with
no meaningful biological variation across cells (samples) [31]. Identifying the
appropriate set of marker genes interprets the scRNA-seq data at the gene level
with a deeper biological meaning [3, 30].

Some studies considered the feature selection problem in such data as an
optimization task from the mathematical perspective. In [19], the authors de-
scribed a fitness function that incorporates both performance and feature size.
Applying the Particle Swarm Optimization (PSO) method and the utilization
of Convolutional Neural Networks, they offer promising results in classifying the
different types of cancer based on tumor RNA-Seq gene expression data.

In [24], a feature selection approach is proposed for RNA-seq gene expres-
sion data. It reduces the irrelevant features by applying an ensemble L1-norm
support vector machine methodology. Its classification performance in RNA-seq
data shown promising results, especially in small n – large p problems, with
n samples and p features (genes). scTIM [15] framework utilizes a multiobjec-
tive optimization technique aiming to maximize gene specificity by considering
the gene-cell relationship while trying to minimize the number of selected genes.
This model allows the new cell type discovery as well as the better cell categories
separation. M3Drop [3], describes two feature selection methods for scRNA-seq
data which isolate genes with the high proportion of zero values among their
cells, also called the “dropouts” effect. It is a central feature of scRNA-seq due
to the considerable technical and biological noise.

Despite the remarkable progress of feature selection methods in gene ex-
pressions, their adaptation in single-cell RNA-seq is at a very early stage. Given
that these data have high complexity, dimensionality, and sparsity, lead us on the
necessity of incorporating an optimization method for the appropriate feature
(genes) selection. Our intuition here is that across the genome, several combina-
tions of certain genes will be dominant in cell separation of a given experimental
study.

In this paper, we propose a novel feature selection method and analysis,
called Feature Selection via Genetic Algorithm (FSGA), that tackles the above
challenges. FSGA utilizes genetic optimization principles and identifies low-
dimensional sets of features. The aim here is to use a simple distance-based
classifier (we use a KNN classifier) during the feature selection process in or-
der to identify feature groups that are nicely separated in Euclidean space. This
property is desirable in most classification methods, and thus we expect to boost
the performance of any classifier. We showcase FSGA’s effectiveness in two real
scRNA-seq experiments with gene dimensions up to 36708. Our framework can
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identify very low-dimensional subsets of genes (less than 200) while boosting the
classifiers’ performance. The obtained results offer new insights in the single-
cell RNA-seq data analysis offering the potential that variants of the proposed
method can work also in other data types.

2 Approach

2.1 Problem Formulation

scRNA-seq datasets have very high-dimensional feature spaces, with features
spaces going up to D = 30K dimensions. We would like to find a group of K
features where K � D and we can achieve similar or even better classification
performance. We represent the feature space as x = [x1, x2, . . . , xD]T ∈ RD and
define the problem of feature selection as (see also [12, 1]):

f∗ = argmax
f

J(xf ) (1)

where f = [b1, b2, . . . , bD]T ∈ BD with bi being a Boolean1 value whether we
select the dimension i, xf ∈ RK is the feature dimension vector where we keep
only the dimensions as defined by f , and J is training and evaluating the per-
formance of a given feature vector.

2.2 Feature Selection via Genetic Algorithms

We choose to tackle this problem using a Genetic Algorithm (GA). GAs operate
on a population of individuals and attempt to produce better individuals every
generation. At each generation, a new population is created by selecting indi-
viduals according to their level of performance and recombining them together
using operators borrowed from natural evolution. Offspring might also undergo
a mutation operation. In more detail, any GA has the following generic steps:

1. Initialization of the population
2. Evaluation of the population
3. Selection of the fittest individuals
4. Crossover between some of the selected individuals
5. Mutation of some individuals

The previous two steps produce a new population
6. Go back to step 2

There a few critical parameters to choose so that a GA can be effective: (1)
gene representation, (2) selection pressure, (3) crossover operation, (4) mutation
operation, (5) initialization of the population and (6) performance measure.
Below we detail our choices.

1 We define B as the space of Boolean variables.
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Gene representation In order to be able to use GAs for solving the problem
as defined in Eq. (1), we use the vectors f = [b1, b2, . . . , bD]T ∈ BD for the gene
representation. This is a natural choice for this task as changing the values in
the gene will correspond in selecting different features for the classification [17,
14, 1, 12].

Selection operator We adopt a selection operator that selects the top-50%
individuals of the population (according to the performance measure). More
sophisticated selection operators can be used here to improve performance. We
also always insert the best individual back into the new population (thus making
the algorithm elitist).

Crossover operator The crossover operator consists of combining two (2)
individuals (called parents) to produce a new one (offspring). We randomly de-
termine parts of the gene parent vectors to be swapped.

Mutation operator Each offspring individual can undergo a mutation oper-
ator. For each individual we randomly switch any dimension of its gene vector.
So, with some probability we change which features the offspring keeps for the
classification.

Initialization of the population One crucial aspect of the initial population
is to push for as little as possible number of selected features, but not hurt
performance. For this reason, we produce the initial population where for each
individual each feature dimension has an 1h chance of being selected. This
procedure produces populations with small number of selected features, but
keeps diversity in which feature dimensions are being selected.

Objective Function (Performance Measure) When optimizing for the best
features, in each run of the algorithm we split the datasets into three sets: (a)
training set, (b) validation set, and (c) test set. The sets are roughly 60%, 20%
and 20% of the size of the original dataset respectively (keeping the percentage
of classes similar in each dataset). At each evaluation, we use the training set to
train the KNN-classifier, and create an objective function of the form:

J(xf ) = 0.6 ∗ accval + 0.4 ∗ acctrain − Psparseness (2)

where accval is the accuracy of the classifier in the validation set, acctrain is the
accuracy of the classifier in the training set, and Psparseness = 10 ∗

∑D
i=1 bi is a

penalty score penalizing high dimensionality of the selected feature space. The
proposed objective function is slightly different from the ones in the literature [14,
17, 1, 12]; we are doing the weighted average of the validation and the training set
accuracy. The reasoning behind this weighted average is to not let the algorithm
overfit a specific part of the dataset. At the end of each generation, we report
the accuracy on the test set (see Sec. 3), but the algorithm never uses this.
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Fig. 1: Convergence of algorithm in GSE52583 dataset. Solid lines are the me-
dian over 20 replicates and the shaded regions are the regions between the 25-th
and 75-th percentiles.

3 Experimental Analysis on scRNA-seq Datasets

We evaluated the classification performance of our FSGA method using two
real transcriptomics datasets from single-cell RNA-seq studies. Datasets were
obtained from Gene Expression Omnibus [10] and ArrayExpress [4]. More spe-
cific, the first dataset (accession number: GSE52583) [32] has transcriptomics
experimental data profiles for 23, 228 genes. It is a transcriptome analysis of 201
distal mouse lung epithelial cells from four developmental stages. The second
dataset (accession number: E-MTAB-2805) has studied expression patterns for
36078 genes at single cell level across the different cell cycle stages in 288 mouse
embryonic stem cells [7].

The evaluation process was split into to three (3) parts: (a) evaluating the
optimization process and whether our proposed scheme was converging to good
individuals in all runs, (b) evaluating whether the produced features provide
a good set of features for any classifier, and (c) try to determine whether the
selected features have a biological meaning.

To tackle both challenges we chose to use a simple KNN classifier when opti-
mizing for the best features. The KNN performs k-nearest-neighbor classification
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model [2] using the default parameters with Euclidean as distance measure as
well KD-tree option as search method for N = 5 nearest neighbors. The ratio-
nale behind this choice is that a) KNN is fast, and b) a set of features that
works well under KNN directly means that these features are nicely separated
in Euclidean space. The first fact gave us the ability to run many replicates and
have meaningful comparisons and statistics, while the second one makes it more
likely for other classifiers to work well (see below).

If not mentioned otherwise, all plots are averaged (or taking median/percentiles)
over 20 replicates.

3.1 Evaluation of Feature Selection Process

In order to evaluate the feature selection process, we keep track of the best
individual of the optimization at each generation as well as the number of selected
feature dimensions of the best individual.

The results show that the optimization is able to find high-performing indi-
viduals (see Fig. 1 and Fig. 2). In both datasets, we achieve a median accuracy
score over 0.75 in the test set (this is the set that both the classifier and the
optimizer have never seen). This showcases that our objective function is able
to produce classifiers with nice generalization properties.

Moreover, the results demonstrate that the optimization process increases the
dimensionality of the feature space as long as this helps the process get better
performance. Once the performance stabilizes to a fixed value, the dimensionality
of the feature space stops increasing. This is a desirable property of a feature
selection process since we do not want it to keep adding dimensions if they do
not help in the classification performance. The algorithm converges at around 77
dimensions for the GSE52583 dataset and around 165 dimensions for E-MTAB-
2805 dataset (median values over 20 replicates). Our initialization process is
crucial for achieving these results (see Sec. 2.2), as preliminary results with
a population with individuals containing many dimensions did not manage to
converge to low number of features.

3.2 Evaluation of Selected Features

In this section, we want to evaluate the quality of the selected features both
quantitatively and qualitatively. For a principled analysis, we perform the fol-
lowing steps:

– For each run of our algorithm2, we take the feature dimensions of the best
individual at convergence;

– We take those feature dimensions and modify the datasets (i.e., we include
only those input dimensions);

– Using the modified datasets we train three (3) different classification meth-
ods, namely KNN, LDA and SVM [9, 23];

2 We have 20 runs/replicates.
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Fig. 2: Convergence of algorithm in E-MTAB-2805 dataset. Solid lines are the
median over 20 replicates and the shaded regions are the regions between the
25-th and 75-th percentiles.

– We compare the performance of the algorithms using our selected features
against training the same classifiers using all the feature dimensions (we use
Accuracy and F1-score for comparisons);

– All executions are done using the 10-fold cross validation process in 20 in-
dependent trials.

Parameter setting for all methods was chosen based on a fitting procedure in
order to optimize their performance. Minor variations for the selected values do
not affect the results significantly and thus an extensive analysis is excluded. All
algorithms were run with the corresponding default parameters. We exclude an
extensive parameter analysis of all classifiers since our aim was to highlight for
each classifier its difference between the classification performance in the original
and in the reduced feature space.

The results showcase that in almost all cases the feature space produced
by our algorithm increases the performance of any classification method (see
Fig. 3). In all cases, except when using LDA on the E-MTAB-2805 dataset, our
feature selection approach boosts significantly the performance of all classifiers.
Even in the worst case (LDA/E-MTAB-2805), the result of the classification
is comparable with training in the full feature dimensions by using only 180
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Fig. 3: Evaluation of selected features using different classifiers (20 replicates).
We compare using two (2) metrics: Accuracy (top row) and F1-Score (bottom
row). For each algorithm, we show results before and after the usage of our
feature selection algorithm for both datasets. The box plots show the median
(black line) and the interquartile range (25th and 75th percentiles); the whiskers
extend to the most extreme data points not considered outliers, and outliers
are plotted individually. The number of stars indicates that the p-value of the
Mann-Whitney U test is less than 0.05, 0.01, 0.001 and 0.0001 respectively.

dimensions. The performance improvement to the SVM classifier is highlighting
the effectiveness of our approach to generate separable feature spaces.
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Fig. 4 shows tSNE plots [22] of one typical feature selection run of the algo-
rithm in the GSE52583 and the E-MTAB-2805 datasets respectively for qualita-
tive inspection/verification. The plots showcase the effectiveness of the proposed
method to find feature dimensions that can separate the classes in different re-
gions of the space.

3.3 Biological Analysis

We further examine the selected genes for each dataset concerning their en-
richment in Gene Ontology terms for various Biological Processes (see Table 1)
using the Functional Annotation Tool David [18]. Through this analysis, we aim
to examine how our list of selected genes relates to terms corresponding to the
respective biological case under-study. Both datasets extract genes which are
related to cellular functions. Both studies are relevant with these functions since
their studies are related with the developmental stages of distal mouse lung ep-
ithelial cells and the different cell cycle stages in Mouse Embryonic Stem Cells.

4 Discussion & Conclusion

Machine Learning tasks have become the first choice for gaining insight into
large-scale and high-dimensional biomedical data. These approaches can tackle
part of such data complexity offering a platform for effective and robust com-
putational methods. Part of this complexity comes from a plethora of molecular
biology experimental data having extremely high dimensionality. An indicative
example is the single-cell RNA-seq (scRNA-seq), an emerging DNA sequencing
technology with promising capabilities but significant computational challenges
due to the large-scaled generated data.

Given that this technology offers the opportunity to understand various bio-
logical phenomena and diseases better, there is a need for novel computational
methods to deal with this complexity and dimensionality. Dimensionality reduc-
tion methods are an appropriate choice, but they do not give us explanatory
power at the gene level. A significant challenge here is identifying the feature list
in terms of genes (dimensions), which will maintain or increase the performance
of various machine learning tasks.

Highlighting the salient by eliminating the irrelevant features in a high di-
mensional dataset such as the high-throughput gene expression experiments,
may lead to the strengthening of a traditional classifier’s performance [24]. Also,
given a features list which is dominant in terms of class separation in a classifi-
cation process, we obtain a better understanding and interpretation of a given
gene expressions dataset.

On the other hand, deep learning has gained ground in biomedical data min-
ing methods. However, its inherent black-box feature offers a poor interpretabil-
ity for a better understanding of such data. In the case of gene expressions
where the data contain a record of tens of thousands of genes, it is crucial to
find the genes and especially the combination of these genes, which will better
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Fig. 4: 2D t-SNE visualizations are illustrated for comparisons between the orig-
inal datasets and the datasets with reduced features using our FSGA method.
Each point represents a cell sample, and each color represents a different cell
type according to original data annotation. Our method shows its superiority by
efficiently discriminating the cell classes in both datasets.

capture the information contained in the data set. Also, through the develop-
ing of interpretable ML approaches offers the opportunity not only for a better
data interpretation but also for finding the dominant genes which may need to
be considered individually or in combination for their potential effect on the
under-study case (e.g. a disease, a biological process).

Through our proposed feature selection method using a Genetic Algorithm,
we provided evidence about its potential in single-cell RNA-sew analysis re-
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Term Count P-Value

GSE52583

negative regulation of cellular process 55 9.0E-2
cellular macromolecule metabolic process 127 1.2E-10
cellular nitrogen compound metabolic process 96 1.9E-6
positive regulation of cellular metabolic process 54 3.4E-6
cellular catabolic process 31 8.7E-5
cellular response to chemical stimulus 44 1.0E-3
response to extracellular stimulus 6 3.8E-2
regulation of secretion by cell 7 6.2E-2
negative regulation of cell differentiation 7 9.4E-2

EM-TAB-2805

intracellular transport 11 2.5E-2
establishment of localization in cell 13 2.8E-2
positive regulation of cell communication 11 5.4E-2
cell communication 31 7.0E-2
regulation of cellular component size 6 9.0E-2
circulatory system process 8 2.2E-3
response to extracellular stimulus 6 3.8E-2
regulation of secretion by cell 7 6.2E-2
negative regulation of cell differentiation 7 9.4E-2

Table 1: Enrichment analysis for GSE52583 and E-MTAB-2805 datasets using
gene ontology terms of the selected features obtained from the proposed frame-
work. The first column contains the gene ontology terms for various biological
processes. The second column represents the number of genes that present en-
rich action in each term. The third column represents a modified Fisher’s exact
p-value.

garding the classification performance. Our intuition was that an optimal com-
bination of genes could improve both the classification performance and the
interpretability of a given data. The first is critical since even if this feature sub-
set contains genes unrelated to each other, their combination might be highly
correlated with the classification. The latter can contribute in the emerging ex-
plainable artificial intelligence field.

The obtained results offer new insights in the single-cell RNA-seq data anal-
ysis offering the potential that variants of the proposed method can work also
in other data types. Our contribution, which is lies in the intuition that specific
combinations of small gene groups have a key role in our scRNA-seq data, is
partly confirmed by the above results.
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