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Abstract— Many effective evolutionary methods have been
proposed that allow robots to learn how to walk. Most of the
proposed methods have one or more of the following drawbacks:
(a) utilization of hand designed open loop policies that cannot
scale to different robots, and/or (b) requiring big wall time
due to sample inefficiency and simulation costs, a fact that
limits the practical usage of those algorithms. In the paper
at hand, we propose combination of (a) a simplified model
for locomotion dynamics, and (b) the effectiveness of quality-
diversity algorithms, and propose a novel algorithm that is able
to evolve, in less than an hour on a standard computer, generic
(e.g. neural network), and reactive locomotion policies. Our
approach makes it possible to generate in a few minutes reactive
policies for locomotion that can perform dynamic motions like
jumps. We also present preliminary results of transferring the
behaviors to realistic simulators using a whole body inverse
kinematics solver and a joint impedance controller.

I. INTRODUCTION & RELATED WORK

Over the last few years, we are witnessing more and more
legged robots that leave the safe lab conditions and transition
to real world and less constrained environments. Most of
this rapid progress has been enabled by a combination of
advances in control and robot learning, while optimization-
based control methods have been the core ingredient in many
of the milestone results [1], [2]. We are now starting to
observe bipeds, quadrupeds and humanoids that can walk
reliably in flat ground, climb stairs, and even operate in
uneven terrain under uncertainty [3]. Through these advance-
ments, we are also witnessing the first practical and real-
world deployments of legged robots (e.g. ANYmal [4] and
Spot [5], [6] quadrupeds).

However, manually designing controllers for legged robots
is a challenging process, mostly because the dynamics of the
systems are non-trivial and the robots have many degrees
of freedom. Optimization-based control is one of the most
promising directions and it is the one that has produced
the most effective controllers [1]. Robot learning [2] is an
orthogonal approach to optimization-based control, but few
works have effectively merged the two paradigms [1], [7].

Many Evolutionary Algorithms (EAs) have been proposed
to automatically design locomotion controllers with impres-
sive results especially for robots with many feet [8]. For
example, MAP-Elites has been used to pre-compute a big
diverse set of controllers to allow fast adaptation despite
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Fig. 1. Overview of EvoLoco approach

mechanical damages in a hexapod robot [9], while similar
ideas have been explored in many recent works [10]–[12].
Another successful example is EvoRBC [13] that proposes
an hierarchical setup where the first level used Quality-
Diversity (QD) methods to generate diverse behaviors and
the second level learns a controller to “select” among them
to solve a specific task. Contrary to model-based methods,
EAs produce behaviors that require much less tuning to work
and are less computationally demanding (usually the final
policies are simple sinusoidal signals). Overall, the path from
zero to a walking robot is much shorter with EAs than the
same path with model-based optimization methods [2], [14].

EA approaches, however, have some limitations that pro-
hibits their practical usage in real-world settings. First, be-
cause by construction we are not in a position to understand
what the controller chooses and why, it is difficult to use them
on physical expensive platform like humanoid robots. Sec-
ondly, since the optimization almost exclusively happens in
simulation, the resulting policies tend to overfit the simulator
they have been trained on, a fact which makes the real-world
transferring challenging [14]–[16]. Lastly, in an attempt to
bridge the reality gap the usage of “expensive” simulators
is common and thus most EAs for generating locomotion
policies require very big wall times.

In the paper at hand, we present a novel method, called979-8-3503-1806-7/23/$31.00 ©2023 IEEE



EvoLoco (see Fig. 1 for an overview of EvoLoco ap-
proach), that takes inspiration from the optimization-based
control literature [1], [17] and recent methods on combin-
ing learning and model-based control [7], [18]–[20], and
effectively combines (a) a simplified model for locomotion
dynamics [21], and (b) the effectiveness of Quality-Diversity
algorithms [22], [23]. EvoLoco is one of the first methods
that allows the generation of multiple diverse and different
behaviors in a few minutes for any legged robot with minimal
to zero hyper-parameter tuning. Overall, our method is split
in three parts:
1) First, we create a fast and lightweight but realistic simu-

lator using a simplified model for locomotion dynamics;
2) We, then, use this simulator to generate many diverse

reactive closed-loop behaviors using a state-of-the-art
Quality-Diversity algorithm;

3) Finally, we showcase how the generated behaviors can
be transferred to a realistic simulator using a whole
body inverse kinematics solver and a joint impedance
controller.

To the best of our knowledge, EvoLoco is one of the first
methods that can automatically generate reactive closed-loop
locomotion policies in a few minutes on a standard desktop.

The rest of the paper is organized as follows. In Section II
our approach is presented. In Section III experimental results
are given and analyzed. The paper ends in Section IV with
a synopsis and concluding remarks.

II. APPROACH

Our approach relies on the usage of a simplified but strong
modeling of walking robots, the Single Rigid Body Dynamics
(SRBD) model (Sec. II-A) [1]. Using this model, we define
a simulation procedure that can produce realistic walking
behaviors while being much faster than off-the-shelf rigid
body simulators. We then combine this model with Quality-
Diversity algorithms and propose a pipeline for efficiently
(i.e. in a few minutes) evolving hundreds of reactive control
policies that can achieve a wide range of behaviors (Sec. II-
B). Finally, we devise a whole body inverse kinematics solver
together with a joint impedance controller to effectively
follow the control policies on a real or realistically simulated
robot (Sec. II-C). The overall goal of our method is to
automatically identify and learn controllers that can make
a robot (of any number of feet), walk in any direction
effectively.

A. Single Rigid Body Dynamics Model

We model walking robots with any number of legs using
a single rigid body dynamics model with contacts (Fig. 2).
In this model, we assume that the robot can be modeled
as a single rigid body with constant moment of inertia and
mass-less limbs/legs that can generate contact forces.

The rigid body has a mass m ∈ R+ and moment of inertia
I ∈ R3×3. The body can be described by its linear position
pb ∈ R3, linear velocity1 ṗb ∈ R3, body orientation R ∈

1We denote time derivatives with an upper dot: e.g. ẋ.
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Fig. 2. Single rigid body dynamics model with contacts

SO(3) and angular velocity2 ω ∈ R3. Each leg i has a
position pi ∈ R3, it can generate contact forces f i ∈ R3,
and we also assume a phase variable φi ∈ Z+ per leg that
increases linearly in time. We define T ∈ Z+ the cycle time
and Tswing ∈ Z+ the duration of the flight time for each
leg (Tswing < T ). If (φi mod T ) < Tswing, then the foot i
is in the swing phase; otherwise it is in contact with the
ground/environment (stance phase). When the leg i is in the
swing phase, then it does not exert any contact force, f i =
0. Given all the above, at each time step the root body is
“getting” the following forces and torques:

f total =
∑
i

f i +m g,

τ total =
∑
i

ri × f i, (1)

where g is the gravity vector, ri = pi − pb, and × defines
the cross product of two 3D vectors. Given the forces and
torques in the above equations, we can compute the linear
and angular accelerations of the body as follows:

p̈ =
f total

m
,

ω̇ = I−1(R⊤τ total − ω × Iω). (2)

These equations are usually referred to as the Newton–Euler
equations for rigid body motion in 3D space.

1) Forward Simulation: Once we have the accelerations
we can use any integration scheme to perform forward sim-
ulation. We use a semi-implicit Euler integration scheme3:

ṗt+1 = ṗt + p̈dt,

pt+1 = pt + ṗt+1dt,

ωt+1 = ωt + ω̇dt,

Rt+1 = Rtexp(ωt+1dt), (3)

where exp is the exponential mapping of SO(3) [24].
Using the above toolkit, we can define a forward simula-

tion where at each time-step the user defines the desired foot

2We express the angular velocity in the body coordinate frame, while the
rest variables are in the world/inertial coordinate frame.

3We could use more advanced integration schemes, e.g. corresponding
high-order Runge-Kutta methods, but we chose the semi-implicit Euler due
its simplicity while being satisfactorily accurate and stable for the task.



forces, f i, to follow. In order to have realistic forces (i.e. legs
that do not slip when in contact), we need to adhere to the
following constraints:

f i · ni = 0, if leg i in swing phase,
f i · ni ⩾ 0, if leg i in stance phase,
− µf i · ni ⩽ f i · ti ⩽ µf i · ni,

− µf i · ni ⩽ f i · bi ⩽ µf i · ni, (4)

where ni, ti, bi are the normal and tangential directions of
the i-th contact, µ is the friction coefficient between the leg
and the environment. We then do one step with the semi-
implicit Euler integration.

In order to be able to fully simulate a walking robot, we
need the feet of the robot to be moving. Since we assume that
during the swing phase of leg i the force f i = 0, this means
that the movement of the leg during the swing phase does not
affect the motion of the root body. For this reason, we do not
model explicitly the movement of the legs in swing phase,
but implictly (see Sec. II-C). This modeling produces the
following realization: we only need to keep track of the feet
positions pi for each stance phase. Moreover, we assume that
a foot that is in stance phase should not move at all. This
yields the fact that when one foot changes from stance to
swing phase

(
aka when (φi mod T ) = 0

)
, we can compute

the next target impact position of this foot. We do this using
a Raibert-like heuristic [25]:

pnext
i = pb +R(rref + kfootR

⊤ṗb),

p
next/z
i = h(pnext/(x,y)

i ), (5)

where rref is the reference position of the foot in the body
frame, h is a terrain function that gives the height of the
terrain at a given (x, y) position (in our case h = 0 for all
positions; i.e. we use a flat terrain), and kfoot is a user defined
gain (we use kfoot = 40dt).

B. Quality-Diversity for Locomotion Generation

Getting inspiration from [9], [10], [13], we leverage
Quality-Diversity (QD) algorithms [22], [23], [26] in order
to generate a diverse set of locomotion behaviors. While
QD algorithms are effective in many domains [27]–[29],
they have been shown to be particularly effective in fast
robot adaptation [9], [10], [30], and in designing locomotion
controllers in general [9], [13], [31].

In this work, we use the MAP-Elites algorithm [27],
[32]: an evolutionary algorithm that keeps diversity in a
behavior space (this is also referred to as feature space).
In short, at each iteration (Alg. 1), MAP-Elites alters copies
of solutions, θ, that are already in an archive to form new
solutions. The alterations are done with mutation and cross-
over operators like in traditional evolutionary algorithms. The
new solutions are evaluated and then potentially added to the
cell corresponding to their behavior descriptor, b. If the cell
is empty, the solution is added to the archive. Otherwise,
only the best solution is kept in the archive. The archive has
a maximum capacity of k and can have many forms. In the

original, implementation the archive is a grid [9], [27], while
in recent extensions [22], [23], [32] more generic container
and initialization schemes are adopted.

Algorithm 1 MAP-Elites algorithm
1: procedure MAP-ELITES(k)
2: A ←− ∅ ▷ Empty Archive with capacity k
3: for i = 1→ G do ▷ Initialization: G random θ
4: θ = random solution()
5: ADD TO ARCHIVE(θ,A)
6: for i = 1→ I do ▷ Main loop, I iterations
7: θ = selection(A)
8: θ′ = variation(θ)
9: ADD TO ARCHIVE(θ′,A)

10: return A
11: procedure ADD TO ARCHIVE(θ,A)
12: (p,b)←− evaluate(θ)
13: c←− get cell index(b)
14: if A(c) = null or A(c).p < p then
15: A(c)←− p,θ
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Fig. 3. Visualization of MAP-Elites behavior descriptor. Each dot repre-
sents one center of the archive, and the lines showcase the direction of the
robot that corresponds to that point. The colors visualize the magnitude of
the cos(α) (the more red the bigger) and of the sin(α) (the more green the
bigger).

1) Behavior Descriptor & Performance Measure: Since
we are interested in generating controllers that can walk in
any direction, we need to define the behavior descriptor in
such a way that allows for MAP-Elites to keep this type
of diversity. In most relevant works, the behavior descriptor
of choice is the final b = {x, y} position of the robot at
the end of each episode/evaluation. Although, this behavior
descriptor enables MAP-Elites to produce many diverse



controllers, it also makes MAP-Elites produce many unin-
teresting behaviors. For example, in a hexapod locomotion
task with this descriptor, MAP-Elites will most likely find
many controllers that have traveled less than 0.1m in a 10 s
episode length. Although some of these behaviors might be
important for fast online adaptation, most of them will not
be of any actual interest.

For this reason, we define a behavior descriptor as the
heading/direction that the final position of the robot “dic-
tates”, that is b = {cos(α), sin(α)}, where α = atan2(y, x)
if x ⩾ 0, and α = atan2(y, x) − π otherwise4. The tuple
(x, y) defines the 2D position of the robot at the end of each
episode. We also define k = 180 and discretize the behavior
space using intervals of δα = 2π/k. In essence, we encode
the direction of the movement of the robot and discretize it at
δα intervals. Fig. 3 depicts the behavior descriptor visually.

Additionally, for MAP-Elites to work effectively, we de-
fine an objective function (to compute the fitness values p)
that penalizes deviations from the target α over the whole
trajectory of the behavior, and rewards faster gaits (i.e.,
behaviors that travel bigger distances). We also include some
regularization terms to prevent divergence of the algorithm:
in particular, we add some terms regarding keeping the
orientation close to identity and the height of the base close
to the nominal one.

2) Closed-Loop Controller: As a last step for MAP-Elites,
we define the controller and its parameters θ. Contrary to
many relevant works that use open-loop and hand designed
policies, we define a reactive policy π(s|θ) as a neural
network that accepts as input the SRBD state and outputs
the forces to exert per foot, f i. In more detail, we use the
state s = {z, ṗ, ax, ay, az,ω, ri, φi} ∈ R10+4Nfeet , where
ax, ay, az is the Euler angles (XYZ) representation of the
orientation of the root body; we do not include the x, y
displacement in order to not overfit specific regions of the
space and have a controller that can work in any initial
condition.

C. Whole-Body Inverse Kinematics and Joint Impedance
Control for Behavior Tracking

The SRBD model, as we will also see in the results
sections, is an effective model that can produce realistic be-
haviors that can be tracked on actual hardware. Nevertheless,
executing the output of the model, specifically the feet forces
and body accelerations, on an actual robot is not an easy
task. Designing a closed-loop controller to effectively track
a reference signal, even from a static plan, poses a non-
trivial challenge that involves numerous design choices [33],
[34]. EvoLoco does not only give a static behavior/reference
signal, but outputs a closed-loop policy that adapts the signal
based on the current state of the system. Tracking this closed-
loop policy on a real robot is an even more challenging task
that requires separate consideration.

In this work, we are interested in showcasing that the
produced behaviors can indeed be realized on realistic sys-
tems and that the SRBD model is capable of producing such

4We always normalize angles inside the interval [−π, π].

behaviors. For this reason, we take the following two-phase
approach:

1) Offline Phase:
a) We take each policy from MAP-Elites and run

them inside the SRBD simulator;
b) We record the body poses and feet positions5;
c) We use a whole body inverse kinematics solver to

compute the joint positions that correspond to the
behavior.

2) Online Phase:
a) While executing the behavior on the robot, we get

the joint positions that correspond to the current
time and we follow them using a joint impedance
controller.

In essence, we create an open-loop controller that attempts
to follow the behaviors produced by MAP-Elites. We leave
the realization of a real-time closed-loop controller for future
work. Below we explain the key parts of each module.

1) Whole Body Inverse Kinematics: The goal of a Whole
Body Inverse Kinematics (WBIK) solver is to find the joint
positions that achieve the desired end-effector poses of
multiple end-effectors at the same time. The main difference
between WBIK and traditional inverse kinematics is that we
formulate the problems as a non-linear program that we solve
using efficient numerical methods. This is needed because
when we have multiple end-effectors, there can be different
chains of joints that contribute to the same end-effector and
thus we cannot solve for each end-effector independently.

In order to find a solution to the problem, we solve a
sequence of Quadratic Programming (QP) problems until
we have the desired accuracy. Before going deeper into the
QP formulation of the subproblems and in order to improve
clarity, we define the following:

a) q ∈ Rj is the full state of the system (with j being the
number of DoFs of the robot, including the 6-DoFs of
the floating base, if present);

b) xe ∈ Rl is the the pose (containing position and
orientation) in Cartesian space of the end-effector e;

c) Je ∈ Rl×j is the world-space Jacobian of the the end-
effector e.

Having the above in mind, the QP problems are formulated
as follows [35]:

min
X
− 1

2
X⊤GX + g⊤X ,

s.t. HEX = bE ,

HIX ⩾ bI , (6)

where X = q̇ are the optimization variables, and we are
optimizing tasks of the form 1

2

∥∥HX − b
∥∥2, and where G =

H⊤H and g = −H⊤b.

5As we have discussed, the model does not give us targets for the feet
when in swing phase. This is an easier task and we define a spline curve
parameterized by time to connect two sequential stance foot positions for a
user specified terrain/ground clearance (we use 0.15m for ANYmal).



In order to have a more concrete example, let us assume
that we have a robot with two end-effectors and a j = 18
degrees of freedom. We have one desired pose per end-
effector, namely xd

1 and xd
2. We also have the Jacobians,

J1 and J2. Assuming that the optimization starts at qk, we
can define two tasks as following:

H1 = J1(qk),

b1 = ẋd
1,

H2 = J2(qk),

b2 = ẋd
2, (7)

where6

ẋd
1 = Kp(x

d
1 ⊖ x1)−Kdẋ1,

ẋd
2 = Kp(x

d
2 ⊖ x2)−Kdẋ2,

H =

[
H1

H2

]
,

b =

[
b1
b2

]
. (8)

The result of each QP problem is a joint velocity vector q̇
that we use to integrate and find a new joint configuration
vector qk+1. We repeat the process for K iterations and stop
once the errors xd

i ⊖xi are smaller than some threshold. We
perform this iterative solve for each timestep and we start the
optimization of the next step from the solution of the previ-
ous timestep. We use the whc library for our implementation:
https://github.com/costashatz/whc.

2) Joint Impedance Controller: In order to effectively
track the produced joint positions on the real robot, we need
to be compliant to ground reaction forces. Otherwise, we risk
pushing too hard on the floor and tipping the robot over. For
this purpose, we define a joint space impedance controller
as [36]:

τ = −K(q − qd)−D(q̇ − q̇d) +M(q, q̇)(q̈ − q̈d), (9)

where q and qd are the measured and desired joint positions
respectively. qd comes from the inverse kinematics solver.
K and D indicate the damping and the stiffness of the
controller, and M(·, ·) is the generalized mass matrix of the
robot. We integrate the desired behavior profile to get the
desired joint velocities and accelerations. Since the base of
the robot cannot be explicitly controlled, the first 6 dofs are
ignored by the simulator.

This controller acts as a mass-spring-damper system and
thus when configured with appropriate gains we get a con-
troller that can accurately follow the desired joint positions
but also be compliant to ground reaction forces.

III. EXPERIMENTS

With the experiments in this section, we aim at answering
the following questions:

6⊖ denotes a meaningful difference in the task space.
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Fig. 4. The “median archive” of the MAP-Elites procedure for the ANYmal
walking scenario. There are 180 dots (one for each center of the archive),
and each dot represents the median (x,y) position over 10 replicates of the
final position of running the controller that corresponds to this center. The
lines represent the median heading over 10 replicates. The color is following
the same convention as in Fig. 3.

7.5 5.0 2.5 0.0 2.5 5.0 7.5
y position

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

x 
po

sit
io

n

MAP-Elites Archive
ANYmal Jump Scenario

Fig. 5. The “median archive” of the MAP-Elites procedure for the ANYmal
jump scenario. There are 180 dots (one for each center of the archive), and
each dot represents the median (x,y) position over 10 replicates of the final
position of running the controller that corresponds to this center. The lines
represent the median heading over 10 replicates. The color is following the
same convention as in Fig. 3.

1) Can EvoLoco produce diverse and interesting locomo-
tion behaviors?

2) How much faster is the SRBD model (and consequently
EvoLoco) compared to full dynamics simulators?

3) Can the behaviors produced by the first part of EvoLoco

https://github.com/costashatz/whc


time
t=0st=7s

Fig. 6. One example behavior generated by the MAP-Elites procedure of EvoLoco for the ANYmal walking scenario.

be tracked by robots on realistic simulators?
In order to answer the above questions and showcase the

ability of EvoLoco to operate with any robot, we devise the
following scenarios:

a) A scenario where an ANYmal quadruped robot [4]
learns how to walk in every direction;

b) A scenario where an ANYmal quadruped robot [4]
learns how to jump in every direction.

We will use both scenarios to test Question #1 & #3, while
we will focus on the first scenario for Questions #2.

A. Diverse Behavior Generation (Questions 1 & 2)

We first approximate the full ANYmal model (Fig. 2) with
the single rigid body equivalent (mass m and moment of
inertia I). We set the parameters of the SRBD as follows:

i) dt: 0.01;
ii) T : 60;

iii) For trotting we set Tswing = 25 and the initial φ1 = 0,
φ2 = Tswing, φ3 = 0, φ4 = Tswing;

iv) For jumping/hopping we set Tswing = 20 and the
initial φ1 = Tswing, φ2 = Tswing, φ3 = Tswing, φ4 =
Tswing.

We then run one MAP-Elites procedure for trotting
and one for jumping as explained in Sec. II-B using a
batch/population size of 256. We execute 10 replicates per
scenario. All the hyper-parameters are the same in both cases:
for the reactive policy, we use a neural network with 1 hidden
layer of 5 neurons. The neural network outputs forces for all
feet for every timestep; we ignore the forces for the feet that
are in swing phase. Each episode has a length of 10 s.

The results showcase that EvoLoco is able to produce
behaviors that span all the k = 180 cells of the behavior
space for both scenarios (Fig. 4, Fig. 5). Overall, we observe
that EvoLoco is able to find very effective gaits that can
reach up to 8.5m when walking and up to 9.82m when
jumping7. Qualitatively, the motions generated by the SRBD
model look natural and produce dynamic behaviors (Fig. 6).
A video showcasing the generated behaviors can be found
at https://youtu.be/VdyUlAAWMzQ.

In order to showcase the speedup that we get from the
SRBD model, we run the same experiment using a full

7Median values over 10 runs of the MAP-Elites procedure.
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Fig. 7. Comparison between the SRBD model and full dynamic simulators.
Because of the SRBD model, EvoLoco is able to produce effective gaits
in less than 30 minutes. On the contrary, MAP-Elites with a fully dynamic
simulator (based on the DART simulator) struggles to produce meaningful
gaits in the given time budget. The QD score is the sum of the fitness values
of all valid individuals inside the MAP-Elites archive [22], [26]. Solid lines
are the median over 10 replicates and the shaded regions are the regions
between the 25-th and 75-th percentiles.

dynamics simulator. Here it is worth mentioning that it is
difficult to run exactly the same experiments, as it is not
obvious how to dictate the type of gait when using a dynamic
simulator. In other words, we cannot just change some step
sequence parameters as in the SRBD model and get different
type of gaits; one would need to find the appropriate reward
function. It is the case that with the SRBD model we can
more easily “dictate” specific type of gaits.

The results showcase that EvoLoco is able to run a lot
more simulated interaction time than the baseline (that uses
the DART simulator [37]8) and EvoLoco generates much
more effective gaits (Fig. 7). It is worth noting as well,
that the baseline is trained using a parameterized open-loop
periodic signal (similar to [9], [10]) and position control. In
preliminary experiments with a closed-loop neural network
policy and torque control, we were not able to produce any
meaningful behavior in the time budget (max 30 minutes)

8We use the robot dart wrapper.

https://youtu.be/VdyUlAAWMzQ
https://github.com/resibots/robot_dart


that we allocated for each run. EvoLoco is able to run around
81906432 episodes in the time budget (≈ 45504 episodes/s),
while when using a full dynamic simulator we were able
to run around 20352 episodes (≈ 11.3 episodes/s, median
values over 10 replicates).
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Fig. 8. The “median archive” of the MAP-Elites procedure for the ANYmal
walking scenario when executing the behaviors in a realistic simulator with
the WBIK solver and the joint impedance controller. There are 180 dots (one
for each center of the archive), and each dot represents the median (x,y)
position over 10 replicates of the final position of running the controller
that corresponds to this center. The lines represent the median heading over
10 replicates. The color is following the same convention as in Fig. 3.

B. Tracking of Generated Behaviors (Question 3)

In this section, we perform experiments that validate the
fact that the SRBD model produces realistic behaviors which
can be tracked on realistic simulations. In more detail, in
this section we run the full EvoLoco approach, take the
policies produced by the MAP-Elites procedure, and test
them on a realistic full model simulator (the same as in the
previous section) using the WBIK solver and joint impedance
controller as described in Sec. II-C.

We continue the ANYmal experiments from the previous
sections, and the results showcase that the proposed control
procedure is able to effectively follow the controllers gen-
erated using the SRBD model. In Fig. 8, we see that the
final archive for the ANYmal walking scenario is similar to
the one produced by the SRBD model. Qualitatively, we see
that EvoLoco can even follow highly dynamic movements
like repeated jumps (Fig. 9). Videos of the produced and
tracked behaviors are available in the following url: https:
//youtu.be/VdyUlAAWMzQ.

IV. SYNOPSIS AND CONCLUDING REMARKS

We have proposed a novel pipeline and control structure
that enables automatic generation of a diverse set of locomo-
tion behaviors and real-time tracking of those behaviors on

realistic simulated robots. The main innovation of the method
lies in the effective combination of simplified dynamics with
the power of quality-diversity algorithms. Our method is
fast and produces reactive controllers that can run on actual
robots. To the best of our knowledge, our method is one
of the first ones to be able to generate reactive generic
policies for locomotion in a few minutes, and can easily be
incorporated in other pipelines. For example, QDax [38] is a
recent pipeline for fast QD evolution through massive GPU
parallelization. Our method is orthogonal to QDax since our
simplified dynamics model can be fully vectorized and run
on the GPU. Overall, we can get even bigger speed-ups by
combining our method with QDax.

The presented methodology presents many paths for future
improvements. Firstly, we can use more sophisticated simpli-
fied models (like the Centroidal Dynamics with Kinematics
model [1], [17], [39]) that are more expressive than our
SRBD but still much faster than off-the-shelf simulators.
Another direction for future work, is to define an hierarchical
learning structure, where we fastly learn a diverse set of
behaviors with our proposed method, while we fine-tune
them on realistic simulators (or even the real robots) [9], [40].
Lastly, the most obvious next step is to implement a state-
of-the-art whole body inverse dynamics controller or model
predictive control method [41], [42] in order to create a real-
time closed loop controller that can follow the generated
behaviors better than the proposed open-loop controller.

Finally, the main limitation of our method is the way we
update the stance feet target locations. At the moment, we
are using a Raibert-like heuristic (see Sec. II-A) which is
effective for periodic behaviors, but can be problematic in
other cases or challenging terrain. To by-pass this issue,
we can use the power of QD algorithms to learn generic
functions that dictate how the feet change between stance
and swing phases, and where to place the feet.
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