
Effective Skill Learning via
Autonomous Goal Representation Learning

Constantinos G. Tsakonas1, and Konstantinos I. Chatzilygeroudis1

Abstract—A long standing goal of robotics researchers is to
develop robots that are able to develop in an autonomous open-
ended manner through lifelong learning and interactions. If
we are to see robots learning in an autonomous and open-
ended manner, we need to develop methods for incremental and
autonomous skill discovery and trial-and-error learning. In other
words, we want our robots to be able to autonomously select their
goals according to their current capabilities and learn controllers
or policies to achieve those goals. In this paper, we take a step
towards solving this challenge and propose a novel pipeline,
called AGRL, that effectively combines deterministic simulations,
Variational Auto-Encoders (VAEs) and Reinforcement Learning
(RL) and enables robots to learn goal-conditioned policies suited
to their capabilities. Our main intuition is that we can use
effective exploration strategies in order to learn a good goal
representation and distribution, and then use this distribution to
generate effective and reachable goals for fast skill learning. We
extensively evaluate the proposed method in simulation with a
7DOF manipulator and a differential drive mobile robot.

I. INTRODUCTION

One of the goals from the first inception of Artificial
Intelligence (AI) is to create agents that are able to learn
autonomously in an open-ended manner [1]. This type of
learning refers to the training of an agent which is decoupled
from a specific objective or task. During this type of learning
process, the agent is free to discover skills and/or objectives
by itself without explicit external feedback or guidance. In this
setting, AI agents also adapt and improve their performance
over time by interacting with the environment. Agents are able
to refine their skills and capabilities without relying on explicit
instructions. We are yet to see systems with such capabilities.

Reinforcement Learning (RL) [2] is a field of artificial
intelligence that focuses on training agents to make sequential
decisions by interacting with an environment. RL is a tool
that can be used for autonomous open-ended learning as it can
allow agents to learn without explicit supervision. RL has seen
a renowned interest lately and has provided effective solutions
for robotic applications [3], [4]. Furthermore, RL’s ability to
handle sequential decision-making makes it well-suited for
scenarios where tasks are interconnected or have a long-term
dependency [5]. Agents can learn to break down complex
problems into smaller subtasks and develop strategies to tackle
them in a coherent manner. This hierarchical approach to

1Computational Intelligence Laboratory (CILab), Department
of Mathematics, University of Patras, GR-26110 Patras, Greece,
tsakonas_k@upnet.gr, costashatz@upatras.gr

learning enables RL agents to tackle increasingly difficult chal-
lenges, leading to continuous improvement and autonomous
growth. One of the initial approaches to address this type of
learning was by using intrinsic rewards [6]. Another approach
is through Universal Value Function Approximators [7], which
aims to develop versatile value functions to be utilized in a
wide range of tasks rather than a specific objective. Neverthe-
less, we are yet to see an RL agent that can truly learn in an
open-ended manner [1].

One approach to overcome the challenges of autonomous
open-ended learning is information-theoretic skill learning,
which is a product of the advancements in the field of
RL and leverages principles from the information theory to
develop an efficient and effective learning framework [8]. The
conceptualization around this idea is to exploit unstructured
raw data by employing properties from information theory
along with unsupervised learning to create compact skill
representations. However, these methods are strongly coupled
with the exploration’s strategy productivity to discover feasible
and diverse skills.

In this work, we propose a novel pipeline for autonomous
skill learning by exploiting Go-Explore as an exploration
strategy in order to efficiently explore the environment and
construct a dataset of states that can produce meaningful
compact skill representations. This allows us to develop con-
tinuous skill representations by learning a goal distribution and
sample new skills from it, in contrast with other approaches
that discover a finite number of skills. We call this pipeline
Autonomous Goal Representation Learning (AGRL). Finally,
we learn these skills by training policies for two types of
tasks, mobile robot navigation and controlling a 7-DOF robotic
manipulator.

II. RELATED WORK

A. Information-Theoretic Skill Learning

Derived from information theory and taking advantage
of mutual information and Shannon entropy, information-
theoretic skill discovery tries to find and optimal policy that
maximizes the mutual information between skills and states.
There have been many attempts to utilize information-theoretic
skill learning. Skew-Fit [9], introduces a self-supervised objec-
tive and a policy learning objective for unsupervised RL. The
self-supervised objective involves predicting state visitation
order, and encouraging exploration. The policy learning ob-
jective maximizes expected cumulative rewards. The method
alternates between training these objectives, promoting state-
covering exploration during the training of the RL algorithm,979-8-3503-1806-7/23/$31.00 ©2023 IEEE

and improving sample efficiency and generalization. Experi-
mental results demonstrate interesting performance compared
to existing exploration methods. Moreover, curiosity-driven
exploration [10], where a robot learns to predict the conse-
quences of its actions and explores states that are difficult to
predict, is based upon the information-theoretic framework.
While the approach demonstrates promising results, it has
limitations in scenarios where the prediction model fails
to capture complex dynamics, leading to suboptimal explo-
ration. DIAYN [11], is a proposed methodology for learning
skills without any explicit reward function by maximizing an
information-theoretic objective based on mutual information
between states and actions. While it achieves skill diversity, it
heavily relies on random exploration and may struggle to find
optimal solutions efficiently due to its inherent exploration-
exploitation trade-off. In general, the most decisive part of
the successful utilization of information-theoretic skill learning
comes down to the quality of the exploration.

The Explore, Discover, Learn (EDL) [8] framework com-
bines unsupervised exploration and hierarchical clustering
to identify distinct and reusable skills that enable effective
behavior in a given environment while disentangling the
process in three phases, exploration, skill discovery and skill
learning. By leveraging variational inference it achieves to
discover a diverse set of skills that cover different states
of the environment. The discovered skills are then clustered
using VQ-VAE model, allowing for the creation of a skill
repertoire, where each skill sets the agent capable to reach
a region in the operating environment. Experimental results
demonstrate that the proposed approach leads to improved
performance and enhanced exploration capabilities compared
to prior methods in a range of challenging tasks. Inspired
by the idea of separating each phase and treating it as an
independent component, we want to explore more effective
exploring strategies and create policies that can reach every
possible state of the environment.

B. State-Space Exploration

Exploration plays a vital role in sequential decision-making
tasks, including reinforcement learning (RL) and count-based
methods. Count-based methods use state visitation counts to
guide exploration, favoring less-visited states [12]. On the
other hand, intrinsic motivation methods, such as information-
theoretic approaches, encourage agents to seek novel and
informative experiences [11]. However, count-based methods
can struggle with sparse rewards [13], and designing effective
intrinsic reward functions can be challenging [14]. Balancing
exploration and exploitation is a difficult task in RL and
remains an ongoing interest of research.

Quality-Diversity (QD) algorithms [15], [16] are evolution-
ary algorithms that attempt to illuminate the whole search
space. Indeed, instead of searching for a unique global op-
timum while trying to devise some intelligent exploration
policy, QD algorithms’ goal is to provide a holistic view of
how high-performing solutions are distributed throughout the
search space. They do this by keeping an archive of previous

good solutions. QD algorithms have had great success in
evolutionary robotics and have been used to generate effective
robot controllers in numerous studies [17]–[20].

Go-Explore [21], is a QD algorithm that addresses the
challenge of efficiently exploring large state spaces with
sparse rewards. It exploits the deterministic nature of simu-
lators combined with a memory-based approach to overcome
limitations in traditional exploration methods [6], [21]. By
maintaining an archive of promising states and periodically
resetting the agent to these states, Go-Explore enables more
efficient exploration. It has achieved impressive performance
in complex environments, such as video games and robotics
applications, by effectively leveraging deterministic simulators
and memory-based exploration. Go-Explore offers a novel
solution to the exploration problem, facilitating the discovery
of effective behaviors in challenging domains. Go-Explore can
be employed to construct a strong goal distribution over the
environment, hence providing better goal representation in the
skill discovery phase.

III. BACKGROUND

A. Reinforcement Learning

At its core, RL involves an agent that interacts with an
environment over a sequence of discrete time steps. The agent
receives observations from the environment, which include
information about the current state, and takes actions that
affect the environment. The environment provides feedback
to the agent in the form of a reward signal, which indicates
how well the agent is doing.

To formalize the RL problem, we use the framework of
Markov Decision Processes (MDPs). An MDP is defined by
a tuple (S,A,P,R, γ), where:

• S is the set of possible states in the environment; it can
also be a continuous space.

• A is the set of possible actions the agent can take; it can
also be a continuous space.

• P is the state transition probability function, which gives
the probability of transitioning to a new state s′ when the
agent takes action a in state s.

• R is the reward function, which specifies the immediate
reward the agent receives when it takes action a in state
s.

• γ is the discount factor that determines the importance
of future rewards compared to immediate rewards.

At each time step t, the agent observes the current state
st, selects an action at based on its policy π, and receives a
reward rt from the environment. The state then transitions to
a new state st+1 according to the state transition probability
function P(st+1|st,at).

The goal of RL is to find an optimal policy π∗ that
maximizes the expected cumulative reward. The cumulative
reward is also known as the return. The return at time step t
is defined as the sum of discounted future rewards:

Gt =

∞∑
k=0

γkrt+k+1. (1)

In many practical applications, the state and action spaces
are continuous. This poses a challenge for RL algorithms,
which typically operate in discrete state and action spaces.
To address this challenge, RL algorithms often use function
approximators, such as neural networks, to represent the value
function or policy.

The value function is a function that estimates the expected
cumulative reward of being in a given state and following a
given policy. The value function can be defined as follows:

V π(s) = Eπ

[∞∑
k=0

γkrt+k+1 | st = s

]
,

= Eπ [Gt | st = s] . (2)

The action-value function, or Q-function, is a function that
estimates the expected cumulative reward of taking a given
action in a given state and following a given policy. The action-
value function can be defined as follows:

Qπ(s,a) = Eπ

[∞∑
k=0

γkrt+k+1 | st = s,at = a

]
,

= Eπ [Gt | st = s,at = a] . (3)

In the general case, the policy π is parameterized by parame-
ters θ, and π(a|s, t,θ) outputs a distribution (e.g., a Gaussian)
that is sampled in order to get the action to apply; i.e., we have
stochastic policies. Most algorithms utilize policies that are not
time-dependent (i.e., they drop t), but we include it here for
completeness. Several algorithms use deterministic policies; a
deterministic policy means that π(a|s, t,θ) ⇒ a = π(s, t|θ).

There are different approaches to solving RL problems, but
one commonly used method is the actor-critic algorithm. The
actor-critic algorithm is a model-free RL algorithm that com-
bines the strengths of policy-based and value-based methods.
The algorithm consists of two main components: an actor
network that learns a policy, and a critic network that learns
the value function.

The actor-critic algorithm updates the policy and value
function parameters based on the observed rewards and states.
The actor network updates the policy by following the gradient
of the expected cumulative reward with respect to the policy
parameters, while the critic network updates the value function
by minimizing the temporal difference error between the
estimated value and the observed reward.

B. Go-Explore

The core idea behind Go-Explore is to divide the learning
process into two main phases: the exploration phase and the
exploitation phase. During the exploration phase, the agent
aims to gather as much information as possible about the
environment by exploring diverse regions. It uses a random
or stochastic policy to sample actions and record promising
states and trajectories in a memory-based archive.

Once the exploration phase is complete, the exploitation
phase begins. In this phase, the agent leverages the collected
knowledge from the archive to focus on the most promising
regions of the environment. It uses a more deterministic

policy to exploit the learned information and maximize the
cumulative reward.

In this work, we use only the exploration part of the Go-
Explore algorithm that can be summarized in Algo. 1.

Input: Environment E, Archive A
Initialize A with empty archive;
while not done do

Exploration Phase: for i from 1 to N do
Initialize environment E;
Initialize state s0;
while not done do

Sample action a ∼ π(s);
Execute action a, observe next state s′ and
reward r;

Add (s,a) to archive A;
Update state s = s′;

end
end

end
Algorithm 1: Go-Explore: Exploration Phase

The Go-Explore algorithm has shown promising results
in challenging RL environments, including complex video
games and robotic tasks [21], [22]. By combining effective
exploration with knowledge reuse, it provides a powerful
approach for discovering optimal solutions in large state spaces
with sparse rewards.

IV. AUTONOMOUS SKILL DISCOVERY AND LEARNING

Following the path of the EDL method [8], we split the
overall process of autonomous skill discovery and learning into
three distinct sub-components: (a) state-space exploration, (b)
skill discovery, and (c) skill learning (Fig. 1). Our intuition
lies in the fact that each component is mostly disentangled
from the others and can be tackled individually.

In AGRL, we tackle the:
• state-space exploration part using the Go-Explore algo-

rithm;
• skill discovery part using Variational Auto-Encoders with

continuous latent space;
• skill learning part using an off-policy goal-conditioned

RL algorithm.
In the following subsections, we detail our choices and inter-
connections.

A. Exploration with Go-Explore

In the state-space exploration part, we are interested in
finding a set of state vectors that describe as accurately as
possible the capabilities of the robot at hand. In essence, we
would like to find all the states that the robot can realistically
be at given the nature of its physical and control characteristics
as well as the characteristics of the environment. For this task,
we turn to QD algorithms as they have been successfully used
to find both diverse and high-performing behaviors even for
complex continuous tasks [16], [17], [20]–[22]. In particular,

Fig. 1. Autonomous skill learning pipeline overview.

we will use the Go-Explore algorithm as it possesses a few
key features that we can exploit in our setup:

• it exploits effectively deterministic simulators;
• it does not require a policy parameterization that can

affect/bias the exploration process;
• it can scale to high-dimensional state spaces (usually the

case in robotics applications);
• it keeps an archive of different states visited as opposed

to policies which is usually done in QD;
• it is effective in rapidly exploring state-spaces even when

no reward signal is available.
In this work, we use our own custom C++ implementation,
where we have implemented effective parallel batch computa-
tions to speed up the exploration process.

B. Skill Discovery
We denote skills as a continuous vector z ∈ RNlatent , and

the skill space as Z: ∀z, z ∈ Z . In the skill discovery part
of AGRL, we are interested in solving two tasks:

1) making the skill space Z a compact representation of
the state space S;

2) learning a skill space distribution that we can use to
generate targets/goals in the skill learning phase.

Throughout the paper we refer to skill space and goal space
interchangeably.

For the first task, we wish to map every point of state space
into a latent skill z. To achieve that we need to calculate the
posterior p(z|s). Thus, based on Bayes’ theorem, we need to
compute

p(z|s) = p(s|z)p(z)∫
p(s|z)p(z)dz

=
p(s, z)∫

p(s|z)p(z)dz
(4)

where p(s, z) is the probability distribution over the states and
latent skills, and the denominator is the evidence. However,
computing the above in the general case is intractable. Hence,
we turn our attention to variational inference to approximate
the posterior, and more specifically to Variational Autoen-
coders (VAE) neural networks [23].

The VAE topology consists of two parts: the encoder and
the decoder network. The encoder network parameterizes a
probabilistic mapping from the input data s to a latent space
z, where z ∼ p(z|s). The encoder produces the parameters
of the approximate posterior distribution p(z|s), typically in
the form of mean µz and variance σ2

z . We denote qϕ(z|s) ≈
p(z|s), where ϕ are the parameters of the encoder network.
The decoder network, parameterized as qψ(s|z) ≈ p(s|z),
reconstructs the original data s given samples from the latent
space z (ψ are the parameters of the decoder network). Similar
to the encoder, the decoder is probabilistic and generates mean
µs and variance σ2

s for each output variable. During training,
the VAE aims to maximize the evidence lower bound (ELBO),
which is a variational approximation of the log-likelihood of
the data. The ELBO is given by:

LVAE(ϕ,ψ) = E [log qψ(s|z)]− KL [qϕ(z|s)||p(z)] (5)

where KL denotes the Kullback-Leibler divergence and p(z)
is the prior distribution over the latent space1. The first term
encourages faithful reconstruction, while the second term
regularizes the latent space to follow the prior distribution.
In practice, we train the VAE networks using the data from

1Which we assume to be N (0, 1).

the exploration step using the Adam optimizer [24] and we
compute Eq. 5 in batches.

When the training of the VAE networks is complete, we
have in our possession approximations of the distributions
qϕ(z|s) ≈ p(z|s) and qψ(s|z) ≈ p(s|z). Practically, we can
use the encoder network to find the latent space representation
of a specific state, while we can use the decoder network to
reconstruct the full state from a specific latent vector.

C. Skill Learning

One interesting fact that we exploit in AGRL is that we
can view the process of sampling a latent vector z′ from the
prior distribution p(z) of the latent space as a way of sampling
a novel goal or skill for our algorithm to learn. This means
that we can use the prior distribution of the latent space and
the decoder network to create a goal sampling distribution that
will effectively generate goals/skills in a continuous spectrum.

As such at this final stage, the agent learns a goal-
conditioned policy so that it can perform any skill generated
by the sampling procedure described just above. To train
the policy, we utilize the Twin Delayed DDPG (TD3) algo-
rithm [25]. TD3 is an off-policy actor-critic RL algorithm that
is suitable for continuous control tasks, and is directly inspired
by DDPG [3]. In comparison with DDPG, TD3 uses two Q-
functions and chooses the smallest Q-value in order to resolve
the Q-value overestimation. Moreover, the policy networks
are updated less frequently than the Q-functions, and noise is
added to the target network’s output to achieve generalization
during training.

One of the most important parts of RL algorithms is
the reward function. In this paper, we experiment with two
different reward functions. At the beginning of each episode
we sample a new skill/goal that we want to learn z′ ∼ p(z).
The first reward function exploits the full decoder network and
we compute:

rlog(s, z
′) = log qψ(s|z′), z′ ∼ p(z) (6)

In the second reward function, we pass the sampled latent
vector z′ through the decoder network and we only keep
the mean prediction, s′ = µs(z

′). We now define a reward
function that computes the mean squared error (MSE) between
the desired target and the current state:

rmse(s, z
′) = −∥s− µs(z′)∥2, z′ ∼ p(z) (7)

Finally, since our trained policies are conditioned on a
skill/goal, the z′ is fixed over the duration of an episode, and
it is a part of the policy’s inputs along with the agent’s state.

V. EXPERIMENTS

With the experiments in this section, we aim at answering
the following questions:

1) Is using Go-Explore more effective than uniform sam-
pling for learning an effective goal distribution?

2) Do we benefit from using a continuous latent space versus
a discrete one which is usually used in the context of skill
discover?

3) How does the choice of the reward function affect the
skill learning performance?

In order to answer the above questions, we devise two

Fig. 2. The mobile robot environment. Black regions are obstacles.

Fig. 3. Go-Explore on mobile robot’s environment. The green circles
showcase the states that Go-Explore has explored.

Fig. 4. Uniform sampling on mobile robot’s environment. The green circles
correspond to uniformly random sampled points.

learning scenarios:
1) A 7DoF manipulator joint-space reaching task. Here the

main idea is to devise an experiment that highlights
the importance of the initial exploration strategy. For
this reason, we create an environment where the end-
effector of the manipulator is constrained to move inside
a “capsule” (Fig. 5).

2) A differential drive mobile robot experiment, where the
mobile robot needs to navigate a map with obstracles and
be able to reach any desired goal state.

1) Baselines and Ablations: In order to answer to the above
questions, we devise some baselines and ablations of AGRL.
In particular, in the manipulator experiment we compare the
following setups:

• AGRL: our proposed method that consists of first explor-
ing with Go-Explore, learning a continuous latent/skill
space and learning a goal-conditioned policy;

• AGRL−: this is an ablation of our proposed method
that replaces the Go-Explore part with uniform random
exploration. In essence, given the fact that we have a
deterministic simulator and we know the kinematics of
our robots and objects, we can sample inside the valid
state space a huge amount of data;

• Joint-Space Goal-Conditioned RL: this is the tradi-
tional approach where we would directly learn a goal-
conditioned policy and at each episode we choose a
target/goal randomly from the joint space. We use this
as a baseline.

It is important to note that neither Go-Explore nor the uniform
random process is aware of the constrained nature of the

Fig. 5. Go-Explore on robotic arm’s environment.

Fig. 6. Uniform sampling on robotic arm’s environment.

environment. However, Go-Explore interacts with the actual
environment while the uniform random process does not
interact with the environment.

In the mobile robot experiment we compare the following
setups:

• AGRL: our proposed method that consists of first explor-
ing with Go-Explore, learning a continuous latent/skill
space and learning a goal-conditioned policy;

• AGRLdiscrete: this is an ablation of our proposed method
that learns a discrete latent/skill space.

To create a discrete number of skills for the skill-conditioned
policy, we deploy the VQ-VAE architecture during the skill
discovery phase [26]. VQ-VAE consists of a lookup table,
named codebook, and each place in this table contains a vector
c. Each c represents the center of a cluster, and during the
training of the model, skills are assigned to these clusters.
By the end of the VQ-VAE’s training, we retrieve a discrete
number of skills equal to the number of clusters, and the latent
representation of each skill is the c. To simplify the above
procedure, VQ-VAE basically creates skills that can reach a
unique region of the environment.

2) Environment Details: For the navigation task, the agent
is placed in an environment containing multiple objects, which
cover a big portion of the environment. The objective is for
the agent to reach any location of the environment using
the learned policy without sticking to the obstacles. The
environment is depicted in Fig. 2. For the robotic manipulator,
we introduce an artificial constraint and we allow the end
effector of the robotic manipulator to move only inside a
“capsule” along the z-axis (Fig. 5). Therefore, the manipulator
needs to learn a policy that can reach any joint configuration
while the end effector moves only inside this capsule. In the
manipulator task, the skill space dimensions are 1D and the
state space is 7D, while in the mobile robot the skill space is
2D and the state space is 3D.

Regarding the navigation task, we use the fastsim simula-
tor [27], whereas, for the 7DOF robotic arm we use the DART
simulator [28] (we use the robot dart wrapper). To provide
some intuition about the exploration of the environment, we
provide an overview of the states sampled for the two tasks
using Go-Explore exploration and random sampling over the
state space. In Fig. 3 and Fig. 4 are the results of the
exploration concerning the navigation task, and in Fig. 5 and
Fig. 6 the results of the robotic arm environment. In both
tasks, we evaluate the policies in 200 unseen valid targets and
report the mean value of the sum of the mean squared errors
per episode. A video showcasing the learned policies can be
found at the following url: https://youtu.be/x-j5mid6jxM.

A. Exploration strategy’s impact

The results showcase that AGRL finds an effective goal
distribution that fosters effective and rapid learning (Fig. 7).
The variation of our method that uses uniform sampling for the
exploration part, fails to identify the underlying structure of the
reachable/interesting states of the environment and the learning

https://github.com/resibots/robot_dart
https://youtu.be/x-j5mid6jxM

0 50 100 150 200
Iterations

400

300

200

100

0
Ex

pe
ct

ed
 R

ew
ar

d
Manipulator Reaching Experiments

AGRL
AGRL
Goal-Conditioned RL

Fig. 7. Manipulator reaching experiments: comparison of different exploration
strategies. Creating the latent space with data generated from Go-Explore
provides a superior goal distribution that fosters effective and rapid learning.
On the contrary, doing a simple uniform random sampling can create a sub-
optimal goal distribution. We include a baseline of using the full joint-space
as a goal and learning by uniformly sampling over this space. Solid lines are
the median over 20 replicates and the shaded regions are the regions between
the 25-th and 75-th percentiles.

diverges. The classical goal-conditioned RL is learning but at
a much slower rate than AGRL.

B. Goal-Conditioned vs Skill-Conditioned Policy

The results showcase that while learning a discrete latent
space gives us the ability to reach the center of unique regions
of the environment, it is difficult to reach any target accurately
(Fig. 8). On the contrary, AGRL using a continuous latent skill
representation is able to learn a goal conditioned policy that
can reach any target.
C. Reward Functions

Since skill-conditioned policies are the most common poli-
cies that are created when referring to skill learning, it is fre-
quently assumed due to their discrete nature, that the standard
deviation of the decoder is fixed. Hence, under this assumption
the Eq. 6 is equivalent to the mean squared error (aka, Eq. 7).
On the contrary, we implement a goal-conditioned policy, and
we are able to acquire both µs and σ2

s as the decoder’s output,
so we can construct a distribution and use Eq. 6. Thus, in
order to compare how effective maximizing the log probability
of the agent’s state is in contrast to minimizing the distance
between the target and agent, we learn two policies, one using
a distance-based reward and one using the log probability-
based reward. We observe that by using both rewards the
policy converges, and even though the MSE reward performs
better in this task, maximizing the log probability could seem
useful in different scenarios (Fig. 9).

D. Verdict

Overall, our experiments showcase two important outcomes:

0 50 100 150 200 250
Iterations

60000

50000

40000

30000

20000

Ex
pe

ct
ed

 R
ew

ar
d

Mobile Robot Experiments
Continuous vs Discrete Latent Space

AGRL
AGRLdiscrete

Fig. 8. Mobile robot task: comparison of continuous vs discrete latent skill
space. Solid lines are the median over 20 replicates and the shaded regions
are the regions between the 25-th and 75-th percentiles.

0 50 100 150 200 250
Iterations

60000

50000

40000

30000

20000

Ex
pe

ct
ed

 R
ew

ar
d

Mobile Robot Experiments
Reward Comparison

MSE Reward
LogProb Reward

Fig. 9. Mobile robot task: comparison of different reward functions. Solid
lines are the median over 20 replicates and the shaded regions are the regions
between the 25-th and 75-th percentiles.

1) In order to learn an effective goal distribution for skill
learning, it is important to create a dataset that contains
states that are reachable by the robot and useful for
the task at hand. We advocate in this paper that QD
algorithms are an effective way of doing so.

2) It is possible to learn a continuous latent/skill space and
use it in an autonomous skill discovery and learning
pipeline. A crucial part for making this possible is that
the learned latent distribution serves as the goal generator
for the skill learning part.

It is important to note that in AGRL we do not use any
explicit prior information about the task or constraints of the

environment. This is autonomously extracted with environment
interaction both in the exploration phase as well as in the skill
learning phase. Overall, AGRL makes a step forward towards
an effective autonomous skill discovery and learning pipeline.

VI. CONCLUSION

In this work, we proposed the AGRL framework, an au-
tonomous skill-discovery pipeline, which extends the EDL [8]
pipeline. Our approach consists of three phases: state-space
exploration, skill discovery, and skill learning. We proved that
a robust exploration strategy plays a crucial role on the quality
of the final learned policy. Regarding skill discovery and skill
learning, we mainly focus on goal-conditioned policies by
treating each possible state as a goal rather than learning
discrete behaviors. We evaluated our proposed methodology in
two types of tasks: a mobile robot navigation task in an envi-
ronment containing obstacles and a 7DOF robotic manipulator
reaching task. Additionally, using a different skill discovery
approach, we show the limitations of skill-conditioned policies
introduced in such tasks. Finally, we explore the impact a
probabilistic reward function has on the learning procedure
rather than a distance-based reward function.

Despite the success AGRL has, it comes with some limita-
tions. Our approach is bounded to the exploration performance
which affects the following stages since the quality of the
exploration determines the quality of the latent representation
of the goals. However, even if the quality of the exploration is
sufficient, the training of the VAE model could be suboptimal,
and the possible causes are extreme dimensionality reduction
or the entanglement of latent space. This will result in less
representative goal representation and will degrade learning.

To advance our work on AGRL, we want to extend this au-
tonomous learning approach, including the goal representation,
to exploit observations from sensors rather than the agent’s
state directly. Sensor data require different handling, however,
and if implemented effectively, it can be an important step
towards implementing AGRL in a real world environment.

ACKNOWLEDGMENTS

This work was supported by the Hellenic Foundation
for Research and Innovation (H.F.R.I.) under the “3rd Call
for H.F.R.I. Research Projects to support Post-Doctoral Re-
searchers” (Project Acronym: NOSALRO, Project Num-
ber: 7541).

REFERENCES

[1] S. Doncieux, N. Bredeche, L. L. Goff, B. Girard, A. Coninx, O. Sigaud,
M. Khamassi, N. Dı́az-Rodrı́guez, D. Filliat, T. Hospedales et al.,
“DREAM architecture: a developmental approach to open-ended learn-
ing in robotics,” arXiv preprint arXiv:2005.06223, 2020.

[2] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998.

[3] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” in International Conference on Learning Representations
(ICLR), 2016.

[4] K. Chatzilygeroudis, V. Vassiliades, F. Stulp, S. Calinon, and J.-B.
Mouret, “A survey on policy search algorithms for learning robot
controllers in a handful of trials,” IEEE Transactions on Robotics,
vol. 36, no. 2, pp. 328–347, 2019.

[5] K. Tsinganos, K. Chatzilygeroudis, D. Hadjivelichkov, T. Komninos,
E. Dermatas, and D. Kanoulas, “Behavior policy learning: Learning
multi-stage tasks via solution sketches and model-based controllers,”
Frontiers in Robotics and AI, vol. 9, 2022.

[6] P.-Y. Oudeyer, F. Kaplan, and V. V. Hafner, “Intrinsic motivation
systems for autonomous mental development,” IEEE Transactions on
Evolutionary Computation, vol. 11, no. 2, pp. 265–286, Apr. 2007.

[7] T. Schaul, D. Horgan, K. Gregor, and D. Silver, “Universal value func-
tion approximators,” in International Conference on Machine Learning
(ICML), 2015.

[8] V. Campos, A. Trott, C. Xiong, R. Socher, X. Giró-i-Nieto, and J. Torres,
“Explore, discover and learn: Unsupervised discovery of state-covering
skills,” in International Conference on Machine Learning (ICML), 2020.

[9] V. H. Pong, M. Dalal, S. Lin, A. Nair, S. Bahl, and S. Levine, “Skew-fit:
State-covering self-supervised reinforcement learning,” in International
Conference on Machine Learning (ICML), 2020.

[10] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven
exploration by self-supervised prediction,” in International Conference
on Machine Learning (ICML), 2017.

[11] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine, “Diversity is all
you need: Learning skills without a reward function,” in International
Conference on Learning Representations (ICLR), 2019.

[12] M. G. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and
R. Munos, “Unifying count-based exploration and intrinsic motivation,”
in Advances in Neural Information Processing Systems (NIPS), 2016.

[13] G. Ostrovski, M. G. Bellemare, A. van den Oord, and R. Munos,
“Count-based exploration with neural density models,” in International
Conference on Machine Learning (ICML), 2017.

[14] R. Houthooft, R. Y. Chen, P. Isola, B. C. Stadie, F. Wolski, J. Ho,
and P. Abbeel, “Evolved policy gradients,” in Conference on Neural
Information Processing Systems (NeurIPS), 2018.

[15] A. Cully and Y. Demiris, “Quality and Diversity Optimization: A
Unifying Modular Framework,” IEEE Transactions on Evolutionary
Computation, vol. 22, no. 2, pp. 245–259, 4 2018.

[16] K. Chatzilygeroudis, A. Cully, V. Vassiliades, and J.-B. Mouret,
“Quality-diversity optimization: a novel branch of stochastic optimiza-
tion,” in Black Box Optimization, Machine Learning, and No-Free Lunch
Theorems. Springer, 2021, pp. 109–135.

[17] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret, “Robots that can
adapt like animals,” Nature, vol. 521, no. 7553, pp. 503–507, 2015.

[18] V. Vassiliades, K. Chatzilygeroudis, and J.-B. Mouret, “Using cen-
troidal Voronoi tessellations to scale up the multi-dimensional archive
of phenotypic elites algorithm,” IEEE Transactions on Evolutionary
Computation, 2017.

[19] K. Chatzilygeroudis, V. Vassiliades, and J.-B. Mouret, “Reset-free Trial-
and-Error Learning for Robot Damage Recovery,” Robotics and Au-
tonomous Systems, vol. 100, pp. 236–250, 2018.

[20] M. Allard, S. C. Smith, K. Chatzilygeroudis, B. Lim, and A. Cully, “On-
line Damage Recovery for Physical Robots with Hierarchical Quality-
Diversity,” ACM Transactions on Evolutionary Learning and Optimiza-
tion, 2023.

[21] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune, “First
return, then explore,” Nature, vol. 590, no. 7847, pp. 580–586, Feb.
2021.

[22] C. Lu, R. Georgescu, and J. Verwey, “Go-Explore Complex 3D Game
Environments for Automated Reachability Testing,” IEEE Transactions
on Games, 2022.

[23] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[24] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in International Conference for Learning Representations (ICLR), 2015.

[25] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approx-
imation error in actor-critic methods,” in International Conference on
Machine Learning (ICML), 2018.

[26] A. Van Den Oord, O. Vinyals et al., “Neural discrete representation
learning,” Advances in Neural Information Processing Systems (NIPS),
2017.

[27] J.-B. Mouret and S. Doncieux, “Encouraging behavioral diversity in
evolutionary robotics: an empirical study,” Evolutionary Computation,
vol. 20, no. 1, pp. 91–133, 2012.

[28] J. Lee, M. X. Grey, S. Ha, T. Kunz, S. Jain, Y. Ye, S. S. Srinivasa,
M. Stilman, and C. K. Liu, “DART: Dynamic animation and robotics
toolkit,” Journal of Open Source Software, vol. 3, no. 22, p. 500, 2018.

	Introduction
	Related Work
	Information-Theoretic Skill Learning
	State-Space Exploration

	Background
	Reinforcement Learning
	Go-Explore

	autonomous skill discovery and learning
	Exploration with Go-Explore
	Skill Discovery
	Skill Learning

	experiments
	Baselines and Ablations
	Environment Details

	Exploration strategy's impact
	Goal-Conditioned vs Skill-Conditioned Policy
	Reward Functions
	Verdict

	conclusion
	References

