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Abstract—Kinodynamic planning is a critical component of
robotics, enabling robots to generate dynamically feasible trajec-
tories while adhering to geometric constraints. Existing methods
for kinodynamic planning primarily fall into two categories:
(a) stochastic planners, such as Rapidly-Exploring Random
Trees (RRT) and Probabilistic Roadmaps (PRM), which excel
in state-space exploration due to their directed randomness,
and (b) optimization-based approaches, which are well-suited
for structured environments, producing smooth and optimal
solutions. In this work, we present Hybrid Trajectory Exploration
for Kinodynamic Planning (HyTraX), a hybrid framework that
integrates the strengths of these two paradigms. Specifically,
HyTraX enhances the effectiveness of the Go-Explore algorithm
by incorporating trajectory optimization with random target
selection as its core exploration strategy. We evaluate HyTraX
on two challenging kinodynamic motion planning tasks: a car-
like agent and a planar quadrotor navigating through maze
environments. Our results demonstrate significant performance
improvements with minimal task-specific tuning, highlighting the
robustness and versatility of the proposed approach.

Index Terms—Kinodynamic Motion Planning, Trajectory Op-
timization, Go-Explore, Quality-Diversity

I. INTRODUCTION & RELATED WORK

Kinodynamic motion planning is a fundamental problem in
the field of robotics [10]. It involves finding a feasible path for
an agent to move from a starting point to a desired goal while
considering not only the kinematics (geometric constraints)
but also the dynamics (forces, velocities and accelerations)
of the robot. It ensures that the discovered trajectories are
both collision-free and dynamically feasible, given the robot’s
physical capabilities. Whether it be a robotic arm assembling
parts in a factory, a self-driving car navigating through traffic,
or a drone flying through an obstacle course, motion planning
is crucial for enabling agents to navigate autonomously in real-
world scenarios. A wide range of diverse methods have been
developed for this task. We could group these methods into
three general categories:
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• Sampling-based methods: [13] Sampling-based meth-
ods explore the robot’s configuration space by randomly
sampling possible configurations and connecting them to
build a roadmap or a tree. These methods are particu-
larly useful for high-dimensional spaces where explicit
representation of obstacles is challenging.

• Optimization-based methods: [9] Optimization-based
methods formulate motion planning as an optimization
problem, where the goal is to find a trajectory that
minimizes (or maximizes) a given cost (or objective)
function while satisfying constraints related to the robot’s
dynamics and the environment.

• Learning-based methods: [3], [11] Learning-based
methods use machine learning techniques to improve
motion planning by learning from data. These methods
can learn to predict feasible and/or optimized paths, or
even directly generate motion plans from sensory inputs.

Sampling-based methods, like RRT* or PRM*, can poten-
tially discover an initial solution quickly and will even con-
verge asymptotically over time to an optimal solution [8]. But
as the complexity of the system increases the computational
time required makes them inefficient [5]. This means that the
discovered trajectories will not be optimal and further post
processing and smoothing might be required [14], [15]. In
addition, RRT* operates under the assumption that any pair of
states can optimally be connected with a straight line, which,
for kinodynamic systems, is typically not a valid trajectory due
to the existence of differential constraints in the problems [21].

Optimization-based methods [7], [17], [18] on the other
hand, can handle complex dynamics and constraints effectively
and provide ”high-quality” smooth trajectories. The existence
of a cost function can also lead to several performance
improvements, such as minimizing time, energy efficiency etc.
A disadvantage of such methods is that they usually require a
good initial condition as a warm start or some form of manual
tuning (e.g. waypoints) to find a solution, especially in long-
horizon problems [23].

Hybrid approaches in motion planning combine the
strengths of different planning techniques to address the lim-



Algorithm 1 Go-Explore Framework

1: procedure GO-EXPLORE(x0, nbatch, niter)
2: A ← new cell(x0, ∅) ▷ Initialize archive, A, with

initial state x0

3: for n = 1→ niter do
4: cells ← SELECTCELLS(A, nbatch) ▷ Select nbatch

cells from archive to explore from
5: new cells ← EXPLORE(cells) ▷ Run stochastic

exploration starting
6: ADDTOARCHIVE(A, new cells) ▷ Add explored

cells to the archive
7: UPDATESCORES(A) ▷ Update the scores of cells
8: end for
9: return A ▷ The outcome of the algorithm is the

archive
10: end procedure

itations inherent in using a single method. Such techniques
usually combine a sampling-based method with optimization
or learning methods. In [17], [18], a random planner (like
RRT*) is used to get a warm start for trajectory optimization.
In [15], the authors use a big database of pre-computed motion
primitives, attempt to connect them via an RRT-like method
and “repair” the constraints violations via trajectory optimiza-
tion. Another approach is to use reinforcement learning (RL)
to train a policy that is then used as a local planner for RRT [3].

In this work, we aim at bypassing the above-mentioned
drawbacks by taking advantage of ideas first proposed in [1],
and provide a novel hybrid kinodynamic motion planner that
has the following characteristics:

1) Does not require pre-computation of motion primitives
2) Converges to a valid solution faster than pure sampling-

based planners
3) Effectively explores the state space and finds solutions

in complex environments, where trajectory optimization
requires extensive task-specific tuning

4) At convergence, we end up with multiple solutions
instead of a single one

Overall, our proposed method effectively combines the
specific characteristics of trajectory optimization and quality
diversity algorithms.

Find a solution Robustify it

Select a cell Go to it Explore

Update archive

Fig. 1: Go-Explore high-level diagram

II. PROPOSED APPROACH

We propose to use trajectory optimization as the exploration
strategy of Go-Explore instead of taking random actions.
In this manner, we leverage the robust solutions provided
by trajectory optimization on a smaller scale, all the while
retaining the exploration benefits inherent in Go-Explore.

We begin by detailing the Go-Explore framework
(Sec. II-A), we continue by explaining our trajectory opti-
mization implementation (Sec. II-B) and how to deal with a
bidirectional search scheme (Sec. II-C), and finally we end by
describing the final proposed algorithm (Sec. II-D).

A. Go-Explore

Go-Explore [4] is a Quality-Diversity algorithm [2] and an
exploration framework that aims to foster continuous explo-
ration by (1) maintaining a global archive of all interestingly
different states that were visited, as opposed to working on an
archive of behaviors, and (2) exploiting deterministic simula-
tors/models and dividing exploration into exactly returning to
a state, without any intentionally added stochasticity, and then
performing stochastic exploration from that state (see Fig. 1).

As the non-stochastic return to the states may lead to
brittle solutions, the algorithm divides itself in two phases: (1)
explore until solving the task, and (2) robustify the solution,
e.g. by running imitation learning on a set of good trajectories
found during exploration.

The first phase of Go-Explore is predicated into building a
set of interesting states, paired with the sequence of actions,
called history, that was taken to arrive to that state from the
starting condition, and with a score indicating how interesting
exploration from that state would be. A state/history/score
group is called a cell. The set of cells is called the archive.
The archive, A, starts out containing only the initial state
(initial state). At every iteration, the algorithm performs the
following steps (see also Alg. 1):

1) Choose nbatch cells from the archive, based on a random
selection weighted on each cell’s score;

2) For each selected cell, return to its state by performing
the associated sequence of actions after resetting the
experiment;

3) Explore from that state stochastically, by performing a
sequence of short commands, generated based on an
arbitrary exploration strategy, and recording the state of
the system after every command;

4) Update the archive with the results from that exploration,
by inserting the explored states and updating every cell
selection scores.

Updating the cell selection scores depends on the specific
score used. Insertion of a cell in the archive follows these
instructions:

1) Compare the cell’s state (new state) to all other cells’
states in the archive, according to a binary similarity
metric (generally, comparing their distance to a prede-
termined delta),



2) If the state is different to all states in the archive, its cell
inserted in the archive. If it is similar to one or more
states, and if the new state scores higher than them in an
arbitrary insertion metric, it replaces the corresponding
cells in the archive.

In this work, we focus on the first part of Go-Explore, that
is the exploration part. In particular, we explore the case of
treating Go-Explore as a kinodynamic planner, and we propose
an alternate exploration strategy that allows Go-Explore to
effectively account for kinodynamic constraints even in high-
dimensional state spaces. Although unexplored in the literature
Go-Explore and RRT share many common ideas.

B. Go-Explore with Trajectory Optimization

The general optimal control problem is defined as fol-
lows [22]:

argmin
x(t),u(t)

J (x(t),u(t)) =
∫ tf

t0

ℓ(x(t),u(t))dt+ ℓF (x(tf ))

subject to ẋ(t) = f(x(t),u(t)) (1)

where1

• x(t) ∈ RNs and u(t) ∈ RNu represent the state and
control trajectories,

• J (x(t),u(t)) is the cost function,
• ℓ(x(t),u(t)) represents the stage cost,
• ℓF (x(tf )) is the terminal cost,
• ẋ(t) = f(x(t),u(t)) defines the dynamics constraints,
• additional constraints can be incorporated as needed.

This leads to an infinite-dimensional problem, which is gener-
ally intractable on a computer. Various techniques are used to
convert it into a finite-dimensional problem, with discretization
and direct collocation being the most common methods [9],
[22]. Upon discretizing the problem, we arrive at the following
formulation:

argmin
x1:K ,u1:K−1

J (x1:K ,u1:K−1) =

K−1∑
k=1

ℓ(xk,uk) + ℓF (xK)

subject to xk+1 = fdiscrete(xk,uk) (2)

where xk ∈ RNs and uk ∈ RNu . Direct collocation optimizes
over knot points and connects them using splines [9]. Both
methods are flexible enough to produce robust solutions. For
discretization, the problem is typically solved using Differ-
ential Dynamic Programming [6], [12], [22], while direct
collocation utilizes general non-linear optimization solvers [9].
In this work, we adopt a direct transcription method and solve
the problem using the Ipopt solver [20].

1) Trajectory Optimization as an Exploration Strategy:
In the original implementation of Go-Explore the exploration
strategy used is essentially a sequence of random actions. We
propose to leverage trajectory optimization instead of random
exploration. At the start of every exploration phase, nbatch
cells are chosen from the archive to explore from. For every
chosen cell we sample a random target point within a small

1Time derivatives are indicated by an upper dot: e.g. ẋ.

distance. We then use trajectory optimization to find the path
between the cells and the respective random target points. In
this manner, we leverage the robust and physically plausible
solutions provided by optimization on a smaller scale, all the
while retaining the exploration benefits inherent in the Go-
Explore algorithm.

C. Bidirectional Go-Explore

To accelerate and enhance exploration, we introduce a
bidirectional Go-Explore scheme employing two agents —
one forward and one backward — each initialized at different
points in the state space. These agents operate with slightly
distinct versions of our trajectory optimization-enhanced Go-
Explore, maintaining separate archives. The forward agent
follows our proposed model, while the backward agent tackles
the inverse optimization problem. For the backward agent,
exploration begins from a randomly sampled point, aiming to
return to a designated cell. The bidirectional process involves
selecting a batch of cells, restoring their states, sampling
nearby random points, applying trajectory optimization in both
forward and backward directions, and updating each agent’s
archive with the resulting optimized trajectories.

Algorithm 2 HyTraX Algorithm

1: procedure HYTRAX(x0, nbatch, niter)
2: A ← new cell(x0, ∅) ▷ Initialize archive, A, with

initial state x0

3: for n = 1→ niter do
4: cells ← SELECTCELLS(A, nbatch) ▷ Select nbatch

cells from archive to explore from
5: for cell in cells do
6: xtarget ← RANDOMSAMPLE(cell) ▷ Randomly

sample a target state near the cell
7: τ ← TRAJECTORYOPTIMIZE(xcurrent,xtarget) ▷

Optimize trajectory from current state to the target
8: ADDTRAJECTORYTOARCHIVE(A, τ ) ▷ Add

the new trajectory to the archive
9: end for

10: UPDATESCORES(A) ▷ Update the scores of cells
based on new trajectories

11: end for
12: return A ▷ The outcome of the algorithm is the

archive
13: end procedure

It is important to note that for a kinodynamic motion
planning application, vanilla Go-Explore is not able to run in
a bidirectional mode. This is because an optimization needs
to be performed to ensure that the randomized behavior will
surely reach the end point.

D. HyTraX Method

The algorithm (Alg. 2) begins by initializing an archive of
explored states, A, with an initial state, x0. In each iteration,
a batch of previously explored cells (states) is selected from
the archive for further exploration. For each selected cell, we
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Fig. 2: Simple Car system [16].

Fig. 3: Planar Quadrotor System [19].

randomly sample a nearby target state in the state space. The
goal then is to compute an optimal trajectory between the
current state and the sampled target state using a trajectory op-
timization method. Each optimized trajectory is subsequently
added to the archive, expanding the known regions of the state
space. The scores of cells in the archive are updated so that we
can compute new selection probabilities that balance quality
and diversity. The process continues for a fixed number of
iterations or until the desired exploration coverage is achieved.

When the bidirectional mode is enabled, we also sample
starting points for the backward archive, and use trajectory
optimization to find paths between the sampled points and the
selected cell (i.e. doing the opposite of the forward archive).
For clarity, we did not include the second archive and the
backward process in the pseudocode.

III. EXPERIMENTAL SETUP & RESULTS

A. Setup

We evaluated the effectiveness of HyTraX through two
experimental environments: a simple car (Fig. 2) navigating
a complex maze and a planar quadrotor (Fig. 3) tasked with
reaching a target while traversing a maze. These environments
were selected to test the method’s ability to handle kinody-
namic constraints and complex state spaces.

In the first experiment, we employ a skidding-free simple
car model (see Eq. 4) [16] constrained to traverse a two-
dimensional maze. The frequently branching and narrow paths
of the maze pose significant challenges both for efficient
exploration and path optimization. The car is required to find
a path from an initial position to a goal state on the opposite

side of the maze. The primary objective is to demonstrate that
our method can efficiently explore the maze and converge to
a solution path faster than vanilla Go-Explore.

The simple car model has a three-dimensional state space,
representing its position (x, y) in meters and orientation θ in
radians. The control space is two-dimensional, with the linear
velocity v in meters per second and δ the steering angle of
the front wheels in radians. So, the simple car system can be
represented as:

xk =

xy
θ

 ,uk =

[
v
δ

]
(3)

and the time derivatives of the state can be expressed as:

ẋ = v cos θ

ẏ = v sin θ

θ̇ =
v

L
tan δ

(4)

where L is the car length in meters.
The second experiment involves a planar quadrotor (Fig. 3),

a more complex kinodynamic system (see Eq. 6), which needs
to reach a target state while navigating a two-dimensional
maze. This system is significantly more challenging to control:
it even requires a control signal just to stay idle and not fall
on the ground. The dynamics of the quadrotor introduce an
additional layer of complexity, as it has to account for both
position and velocity in its movement through the environ-
ment. The maze includes varying heights along the branching
paths, forcing the quadrotor to balance between speed and
control to reach the target. The goal of this experiment is
to demonstrate that HyTraX can effectively handle both the
quadrotor’s dynamics and the constraints imposed by the
environment.

The quadrotor model has a six-dimensional state space,
representing its position (x, y) in meters, orientation θ in
radians and its velocities ẋ, ẏ, θ̇ in meters per second and
radians per second respectively. The control space is two-
dimensional, representing the forces from each motor (u1, u2)
in Newtons. So, the quadrotor can be represented as:

xk =
[
x y θ ẋ ẏ θ̇

]T
,uk =

[
u1

u2

]
(5)

and the time derivatives of the state can be expressed as:

ẍ = − (u1 + u2) sin θ

m

ÿ =
(u1 + u2) cos θ

m
− g

θ̈ =
u2 − u1

0.4ml

(6)

where m is the mass of the quadrotor in kg, l its length in
meters and g the gravitational constant.
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Fig. 4: Success rate for both experiments after 10 runs of the experiments with the various methods.
B. Results

We run both experiments 10 times for a maximum of
40000 iterations. We compare the results of three different
methods: ours (HyTraX), our method without the bidirectional
functionality (Forward-Only HyTraX) and the Vanilla Go-
Explore algorithm. The results are shown in Fig. 4, 5, 6.
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Fig. 5: Top: Shortest paths to the target discovered by the
different methods in the simple car experiment. Bottom: Paths
found using only trajectory optimization. Without a good
warm start, trajectory optimization fails to solve the problem.
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Fig. 6: Top: Shortest paths to the target discovered by the
different methods in the planar quadrotor experiment. Bottom:
Paths found using only trajectory optimization. Without a good
warm start, trajectory optimization fails to solve the problem.

In the simple car experiment (Fig. 5) which is a highly con-
strained environment, HyTraX converges significantly faster
than both the other methods, as shown in Fig. 4 and achieves
a perfect 100% success rate over all runs. The advantage
of using a bidirectional scheme for exploration is clearly
showcased in the results; in a highly cluttered environment



such as a narrow maze, the number of iterations needed to
achieve a perfect score are significantly fewer.

In the quadrotor experiment (Fig. 6) our method (both in
bidirectional and forward-only mode) achieves 100% success
rate in less than 3000 iterations on average, while the Vanilla
Go-Explore needs almost 40000 for an 80% success rate.
This shows the benefit of using trajectory optimization as
the exploration strategy. Because of the higher dimensionality
of the system, taking random actions makes it very difficult
to effectively control the quadrotor and find a feasible path
to the goal point. Trajectory optimization easily overcomes
this problem and therefore quickly discovers kinodynamically
feasible paths for the quadrotor.

One of the main advantages of HyTraX is that it requires
no manual tuning to solve the problem. To show this we
attempted to solve the same problems using only classic
trajectory optimization. We tried three different modes: a)
using some good manually selected waypoints as a warm start
for the optimizer, b) using a linear interpolation between start
and finish as an initial guess and c) setting the initial guess to
zero. The optimizer failed to find dynamically feasible paths
without a good initial condition as a warm start (Fig. 5, and 6).

IV. CONCLUSION

In this work, we presented HyTraX, a hybrid kinodynamic
planning method that integrates trajectory optimization with
the exploration capabilities of the Go-Explore algorithm. By
leveraging a bidirectional approach with forward and back-
ward agents, our method effectively improves exploration
and planning performance, demonstrated on two challenging
kinodynamic motion planning problems. The combination
of randomized exploration and trajectory optimization leads
to significant performance gains with minimal task-specific
tuning and no precomputed motion primitives.

However, our approach has limitations. The current method
relies on the quality of the randomly sampled points, which
can result in inefficiencies for highly complex state spaces. Ad-
ditionally, while trajectory optimization enhances exploration,
it introduces computational overhead that may limit scalability
for complicated systems (e.g. walking robots).

Future work will explore ways to mitigate these limita-
tions. This includes incorporating more intelligent sampling
strategies to reduce dependence on random points, as well
as optimizing the trajectory update process to improve com-
putational efficiency. We also plan to investigate the use of
shared archives or more dynamic inter-agent communication to
further boost exploration capabilities. Moreover, extending the
approach to higher-dimensional systems and real-world robots
will be a key area of focus. Finally, we aim at theoretically
analyzing our approach such that we can provide interesting
guarantees (e.g. probabilistic completeness).
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