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•A major obstacle to the widespread adoption of robots is their

fragility.

• The recently introduced Intelligent Trial-and-Error algorithm

(IT&E), by Cully et al. [1], allows autonomous robots to adapt

to damage in a matter of a few trials. However, trial-and-error

approaches lack any safety constraints/limits and are likely to

damage the robot even more by trying behaviors that are too

extreme for the mechanical design.

•We extend the IT&E algorithm to a safety-aware Intelligent

Trial-and-Error algorithm (sIT&E) by: (1) introducing safety
constraints in the Bayesian optimization procedure and (2)

automatically computing priors over the safety of controller
parameters.

Creating the behavior-performance map with MAP-Elites

•Goal: (1) reduce the dimensionality of the search space (from

policy parameters to behavior descriptors), (2) allow to compute

kernels in the behavior space, (3) pre-compute priors on

performance.
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•We create this “behavior-performance” map with additional

diversity and priors over user-defined safety constraints.

• In our simulated iCub experiments, the behavior space is 5D: 4

dimensions for crawling diversity and 1 dimension for the sum of

contact point forces.

Adaptation Step with constrained Bayesian optimization

•Goal: Find high performing and safe compensatory behaviors

using the behavior-performance produced in simulation as prior

knowledge.
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•We use Gaussian Processes to learn the difference between the

performance of the intact and the damaged robot.

•We model each safety constraint as a separate Gaussian Process,

which we update as we collect data from the damaged robot.

•We use the Expected Constrained Improvement (ECI) acquisition

function: ECI(x̂) = EI(x̂)
∏n

i=1 p(ci(x̂) ≥ 0)

•After damage, the robot (1) selects the most promising behavior

in terms of performance but within the safe region defined by the

constraints (by optimizing the ECI), (2) executes it, and (3)

updates the Gaussian processes.
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Crawling Humanoid Experiments (in simulation)

•We select 4 different damage scenarios; (1) locked shoulder joint,

(2) locked hip joint, (3) locked shoulder joint & angled elbow,

and (4) combination of 2 & 3.

•We compare against the vanilla IT&E algorithm and a

Multi-objective IT&E (MO-IT&E) variant based on the Expected

Hypervolume Improvement (EHVI).

• sIT&E outperforms both algorithms in terms of safety (we

measure safety by the unsafe trials conducted through the

optimization procedure), while it also dominates in terms of safe

crawling speed (m/s). Specifically, sIT&E averages less than 10

unsafe trials for damages 1, 2, 4 and just over 10 for damage 3

compared to 29 or 30 for IT&E and more than 22 for MO-IT&E.

Future/Current Work

•Non-episodic learning — “robots should learn while doing”, not

“learn and then do”.

• Reset-free learning algorithms [2] are essential if we want robots

to operate in real world scenarios.

• Illumination algorithms that scale better can allow us to produce

priors on big policy parameter spaces [3].

• Combining closed-loop policies with learning can lead to safer and

more robust results.

Take home messages

•Unconstrained learning can break robots: we need constraints.

• Pre-computing a behavior-performance map can accelerate search

in large search spaces.

• Computing kernels in a meaningful space (e.g. the behavior

space) can allow BO to work in high-dimensional search spaces.
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