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Abstract. Many efficient and effective approaches have been proposed
in the evolutionary computation literature for solving constrained opti-
mization problems. Most of the approaches assume that both the objec-
tive function and the constraints are black-box functions, while a few of
them can take advantage of the gradient information. On the other hand,
when the gradient information is available, the most versatile approaches
are arguably the ones coming from the numerical optimization literature.
Perhaps the most popular methods in this field are sequential quadratic
programming and interior point. Despite their success, those methods re-
quire accurate gradients and usually require a well-shaped initialization
to work as expected. In the paper at hand, a novel hybrid method, named
UPSO-QP, is presented that is based on particle swarm optimization and
borrows ideas from the numerical optimization literature and sequential
quadratic programming approaches. The proposed method is evaluated
on numerous constrained optimization tasks from simple low dimensional
problems to high dimensional realistic trajectory optimization scenarios,
and showcase that is able to outperform other evolutionary algorithms
both in terms of convergence speed as well as performance, while also
being robust to noisy gradients and bad initialization.

Keywords: Constrained Optimization · Particle Swarm Optimization ·
Quadratic Programming.

1 Introduction and Related Work

Constraint Optimization Problems (COP) appear in many diverse research fields
and applications, including, among others, structural optimization, engineering
design, VLSI design, economics, allocation and location problems, robotics and
optimal control problems [9,11,17,28]. All these real-world problems are typically
represented by a mathematical model that can contain both binary and continu-
ous variables, and a set of linear and non-linear constraints, ranging from simple,
low dimensional numerical functions to high-dimensional noisy estimates.

⋆ This work was supported by the Hellenic Foundation for Research and Innovation
(H.F.R.I.) under the “3rd Call for H.F.R.I. Research Projects to support Post-
Doctoral Researchers” (Project Acronym: NOSALRO, Project Number: 7541).
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The numerical optimization (NumOpt) literature [11,17] has given us a wide
range of powerful tools to tackle those problems. Methods such as Feasible Direc-
tion (FD) [2], Generalized Gradient Descent (GGD) [18], Interior Point (IP) [27]
and Sequential Quadratic Programming (SQP) [17] are able to solve very effec-
tively COP problems even in high dimensions as well as to tackle problems for
cases where the objective function or any of the constraints are non-convex.
Despite their success, those methods require the availability of the exact gra-
dient values of both the objective and constraints functions, which can be dif-
ficult to have in several real-world situations where only approximations are
available. Moreover, it is well known that in practice those methods require
good initialization to achieve reasonable convergence rates. On the other hand,
many Evolutionary Algorithms (EAs) have been proposed for solving COP prob-
lems [4–7,12,21,24] and have been applied with success to many COP problems,
even in cases where the corresponding function values are corrupted by noise.
Most of the methods do not require the knowledge of the gradients [12, 21],
while some of them attempt to improve convergence or performance by using
the gradient information [5]. Nevertheless, EAs are known to need many func-
tions evaluations to be able to find high performing solutions, and can often fail
to find the global optimum.

In the paper at hand, we take inspiration both from the numerical optimiza-
tion and the evolutionary computation literature and propose UPSO-QP, a novel
approach for solving COPs that attempts to merge the two fields. In particular,
UPSO-QP is based on Particle Swarm Optimization (PSO) [20,22] and borrows
some ideas from SQP. We extensively evaluate UPSO-QP in many scenarios
ranging from low-dimensional noiseless settings to high-dimensional non-convex
problems, and showcase that UPSO-QP is able to outperform other evolutionary
algorithms both in terms of convergence speed as well as performance, while also
being robust to noisy gradients and bad initialization.

The rest of the paper is organized as follows. In Section 2 the problem formu-
lation and a brief presentation of the required background material are presented.
In Section 3 a detailed description of the proposed method is provided, while in
Section 4 experimental results are presented. The paper ends in Section 5 with
some concluding remarks.

2 Problem Formulation and Background Material

We aim at solving the following problem:

argmin
x∈RN

f(x),

s.t. hi(x) = 0,

gj(x) ⩾ 0, (1)

where x ∈ RN is the optimization variable, f : RN → R is the objective function,
hi : RN → R with i = 1, 2, . . . , Neq are the equality constraints, and gj : RN → R
with j = 1, 2, . . . , Nineq are the inequality constraints.
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2.1 Particle Swarm Optimization

Particle Swarm Optimizers (PSO) [20, 22] are evolutionary algorithms that are
inspired by the aggregating behaviors of populations. PSO algorithms consist
of a swarm of particles that are randomly positioned in the search space and
communicate with their neighbors. Each particle performs objective function
evaluations and updates its position as a function of previous evaluations of
its neighborhood and the whole swarm. The two main strategies are local PSO
(PSO-LS) and global PSO (PSO-GS). In the local strategy, each particle has
memory of the its best position ever visited, and the single best position ever
visited by its neighbors. In the global strategy, particles maintain memory of their
personal best position and the best position ever found by the whole swarm.

More formally, a predetermined set of M particles are initialized at random
positions in the search space. The position of particle q at initialization (first it-
eration, k = 0) is denoted by xq(0) ∈ RN . Additionally, each particle is provided
with a random velocity vector denoted vq(0) ∈ RN . At each iteration k + 1,
particles update their positions with the following equations:

xq(k + 1) = xq(k) + vq(k + 1). (2)

In the local PSO strategy, the velocity is given by lq(k + 1) = χ
[
vq(k) +

c1r1
(
xb
q(k) − xq(k)

)
+ c2r2

(
xlb
q (k) − xq(k)

)]
, while in the global PSO strategy

gq(k+1) = χ
[
vq(k)+c1r1

(
xb
q(k)−xq(k)

)
+c2r2

(
xb(k)−xq(k)

)]
. xb

q(k) denotes
the best position visited by particle i from initialization and up to time k, and
similarly, xlb

q (k) and xb(k) denote the best position ever found by the neighbors
of i and the whole swarm respectively. Scalars c1, c2 are user defined parameters
and r1, r2 ∈ [0, 1] are randomly generated numbers, while χ is a user defined pa-
rameter similar to what learning rate is in gradient descent. The Unified Particle
Swarm Optimizer (UPSO) [21] is an algorithm that combines the behaviors of
the local and global PSO strategies:

vq(k + 1) = u gq(k + 1) + (1− u) lq(k + 1), (3)

where u ∈ [0, 1] is a user defined parameter. Notice that if u = 0, UPSO coincides
with the local strategy, PSO-LS, whereas, if u = 1, UPSO coincides with PSO-
GS. In that sense, UPSO gives the “best of both worlds” by allowing the user
to achieve superior performance with the fine-tuning of a single parameter.

2.2 Sequential Linear Quadratic Programming

The main intuition of Sequential Linear Quadratic Programming (SLQP) is to
tackle the problem of Eq. (1) by splitting it into easier subproblems that are
iteratively solved. In particular, the problem at each iteration is split into to two
phases: a) the Linear Programming (LP) phase, and b) the Equality Quadratic
Programming (EQP) phase. Before delving more into the details of SLQP, we
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can first see that the Lagrangian of Eq. (1) is as follows:

L(x,λ,µ) = f(x)−
∑
i

λihi(x)−
∑
j

µjgj(x)

= f(x)− λ⊤h(x)− µ⊤g(x), (4)

where h(·) and g(·) are the stacked versions of the constraints.
In the first phase of SLQP, the problem is linearized around the current

estimate xk and an LP is formulated as follows:

argmin
p∈RN

f(xk) +∇f(xk)
⊤p,

s.t. hi(xk) +∇hi(xk)
⊤p = 0,

gj(xk) +∇gj(xk)
⊤p ⩾ 0,

∥p∥∞ ⩽ ∆LP
k , (5)

where f(xk) can be omitted from the optimization since it is constant, the
solution of the problem is defined as xLP

k = xk +pLP, and ∆LP
k is a trust-region

radius in order to make the problem bounded.
Once the above problem is solved, we define the Active Sets, Aeq

k and Aineq
k ,

and the Violating Sets, Veq
k and V ineq

k to be the sets where the constraints are
equal to zero and where the constraints are violated respectively.

In the second phase of SLQP, we define the following EQP problem:

argmin
p∈RN

f(xk) +
1

2
p⊤∇2

xxLk p+
(
∇f(xk) + αk

∑
i∈Veq

k

γi∇hi(xk)

+ αk

∑
j∈Vineq

k

γj∇gj(xk)
)⊤

p,

s.t. hi(xk) +∇hi(xk)
⊤p = 0, i ∈ Aeq

k ,

gj(xk) +∇gj(xk)
⊤p = 0, j ∈ Aineq

k ,

∥p∥2 ⩽ ∆EQP
k , (6)

where ∇2
xxLk is the Hessian of the Lagrangian over the optimization variables

x evaluated at the current estimate (xk,λk,µk), γi, γj are the algebraic signs of

the i-th or j-th violated constraint, αk is a penalty factor, and ∆EQP
k is a trust-

region radius in order to make the problem bounded. Practical implementations
include line search, techniques for updating the penalty factors, estimating the
Hessian instead of computing it, and trust-region radii as well as introducing
slack variables to make the sub-problems always feasible (linearization can yield
infeasible problems). For more details, we refer the interested reader to [17] and
the references therein.
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3 The Proposed UPSO-QP Approach

In the paper at hand, we combine the Unified PSO (UPSO) with Sequential Lin-
ear Quadratic Programming (SLQP). The intuition lies in the fact that SLQP
is among the “strongest” nonlinear optimizers in the literature and practical
applications, while UPSO is effective in black-box settings including constrained
optimization [19, 21]. The goal of our approach is to “fuse” the robustness and
ease of usage of PSO methods with the convergence properties of SLQP meth-
ods. To this end, we propose a new hybrid algorithm, called UPSO-QP, that
is based on UPSO, but also borrows ideas from SLQP. UPSO-QP follows the
general UPSO framework, but we make some alternations to greatly improve its
convergence when gradient (possibly imprecise or noisy) information is available.

3.1 Local QP problems

First, we add a procedure to take advantage of gradient information of the
objective and constraint functions. In particular, each particle q with probability
rqp ∈ [0, 1] will solve the following QP problem:

argmin
p∈RN

1

2
p⊤p+∇f

(
xq(k)

)⊤
p,

s.t. hi

(
xq(k)

)
+∇hi

(
xq(k)

)⊤
p = 0,

gj
(
xq(k)

)
+∇gj

(
xq(k)

)⊤
p ⩾ 0,

∥p∥∞ ⩽ vmax, (7)

where vmax is the maximum allowed velocity for each particle. This problem
is inspired by the LP phase of SLQP (and in general by the SQP literature)
with the added quadratic cost. This problem, similar to Eq. (5), can be infea-
sible because of the linearization. Instead of adding slack variables to ensure
the feasibility of the problem (or other similar “tricks” from the numerical op-
timization literature), we take a practical approach, give the QP solver a fixed
iteration budget and take the solution it has achieved so far even if infeasible.
If the problem is infeasible, most QP solvers will converge to the least squares
solution of the problem. So we expect to get a least squares approximation if the
linearization yields infeasibility. In any case, we assume the solution returned by
the QP problem to be vqp

q (k + 1), while we denote the update from UPSO as
vpso
q (k + 1). The final velocity for each particle q is computed as:

vq(k + 1) = αqp v
qp
q (k + 1) +

(
1− αqp

)
vpso
q (k + 1), (8)

for a user defined parameter αqp ∈ [0, 1]. In this paper, we use the ProxQP
solver [1] to solve the QP problems.
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3.2 UPSO for Constrained Optimization

Apart from moving into the “right” direction, we also need a method for com-
paring particles. This is important since the “best” particle (either in the neigh-
borhood or globally) is crucial for UPSO’s performance. We follow [19] and we
augment the objective function with a penalty function:

f̃(x) = f(x) +H(x), (9)

where

H(x) = h(k)P (x),

P (x) =
∑
i

θ
(
cvi(x)

)
cvi(x)

γ(cvi(x)) +
∑
j

θ
(
cvj(x)

)
cvj(x)

γ(cvj(x)),

cvi(x) =
∣∣hi(x)

∣∣,
cvj(x) =

∣∣min
{
0, gj(x)

}∣∣,
h(k) = k

√
k. (10)

We use the same functions θ(·) and γ(·) as in [19].

3.3 Considerations

The main idea is that solving the problem in Eq. (5) will push each particle
to follow the local linearized approximation of the original problem. This ap-
proximation is very effective close to the actual solution, while it can be bad in
far away regions. The main intuition behind this merging of UPSO with SLQP
is that this local approximation will generally move the particles closer to the
solution, while UPSO can compensate for inaccuracies of those approximations.
Moreover, this problem is solved individually by each particle and thus solved
in many different locations of the search space simultaneously. In this way, we
increase the probability that one of the initial conditions will be in a good region
to enable convergence to the global solution. Moreoever, we get an implicit av-
eraging [13,25] effect that helps UPSO “see through” the noise and inaccuracies
and converge to a better optimum. Additionally, the constraint ∥p∥∞ ⩽ vmax in
Eq. (5) ensures that we stay in regions where the local linearization is expected
to be true, and thus produce well behaved search velocities.

In smooth and well-behaved objective and constraint functions, the solu-
tion of Eq. (5) will provide strong directions towards the optimal solution, and
thus accelerating the convergence of UPSO. In noisy, discontinuous and/or non-
convex problems, the solution of Eq. (5) will at least provide an approximate
direction towards minimizing the constraint violation (least squares solution)
that can help UPSO converge faster.

The parameter rqp is used to handle the trade-off between effectiveness and
wall time performance. The bigger the value more particles will solve the QP
and thus we get better approximations of the search landscape. At the same
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time, this means that we solve more QP problems that can increase the wall
time significantly. On the other hand, the parameter αqp is used to specify how
much we want to trust the solution of the QP problem. In smooth and noiseless
functions, we should set αqp ≈ 1 since the solution of the QP will most likely
provide a good search direction. On the contrary, in noisy or non-convex prob-
lems we should decrease this value, as the QP estimate can be less accurate and
even misleading. Overall, one can change the behavior of the solver by setting
the appropriate values to these parameters.

4 Experiments

We extensively evaluate the effectiveness of UPSO-QP with multiple experiments
and comparing to strong baselines. We aim at answering the following questions:

a) How does UPSO-QP perform in well-defined numerical constrained opti-
mization problems? How does it compare to other evolutionary algorithms?
How does it compare to state of the art SQP and IPM methods? We will
answer those questions in Section 4.1.

b) How does UPSO-QP handle problems with noisy values and gradients? How
does it compare in this domain to state of the art SQP and IPM methods?
We will answer those questions in Section 4.2.

c) How does UPSO-QP operate on realistic high-dimensional constrained op-
timization problems? How sensitive it is in well-shaped initialization? How
does it compare to state of the art SQP and IPM methods? We will answer
those questions in Section 4.3.

In the subsequent sections, we compare the following algorithms:

1) UPSO-QP — custom implementation in C++ of our approach1.
2) UPSO augmented with a penalty function for constrained optimization as

in [19] (UPSO-Pen) — we use our own custom C++ implementation.
3) UPSO augmented with a penalty function and gradient-based repair tech-

nique as in [5] (UPSO-Grad) — we use our own custom C++ implementation.
4) Sequential Least Squares Programming (SLSQP) — this is an SQP approach

as implemented in [14] and it is closely related to SLQP as described above2.
5) A Primal-Dual Interior Point Algorithm as described in [27] (Ipopt) — this

is a state-of-the-art IPM method widely used in practice3.

We have carefully chosen the algorithms to compare UPSO-QP to in order to
be able to highlight the main properties of our proposed method. In particular,
UPSO-Pen does not have access to any gradient information and the penalty
function technique is one of the most widely used in the evolutionary compu-
tation community. UPSO-Grad is an evolutionary method that takes advantage

1 The code is available at https://github.com/NOSALRO/algevo.
2 We use the implementation provided by scipy.
3 We use the C++ implementation provided by the Ipopt library.

https://github.com/NOSALRO/algevo
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html
https://github.com/coin-or/Ipopt
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of the gradient information of the constraints in order to improve performance
and has been shown to have superior performance over other evolutionary tech-
niques [3]. Lastly, SLSQP and Ipopt are two of the most versatile and widely
used numerical optimization algorithms.

4.1 Numerical Constrained Optimization Problems

In the first set of experiments, we select two low-dimensional numerical con-
strained optimization problems with known optimal solutions. This will give us
the ability to extensively test and compare UPSO-QP with other methods, both
from the evolutionary computation literature as well as the numerical optimiza-
tion one. For each problem/algorithm pair we run 20 replicates with different
initial conditions. For all the evolutionary algorithms, we used M = 40 particles,
with 10 neighborhoods, χ = 0.729, c1 = c2 = 2.05 and u = 0.5. For UPSO-QP,
we also set rqp = 0.5 and αqp = 1.

Problem 1 For f : R2 → R [11],

f(x) = (x1 − 2)2 + (x2 − 1)2,

h1(x) = x1 − 2x2 + 1 = 0,

g1(x) = −0.25x2
1 − x2

2 + 1 ⩾ 0.

The best known optimal feasible solution is f(x∗) = 1.3934651.

Problem 2 For f : R6 → R [15],

f(x) = −10.5x1 − 7.5x2 − 3.5x3 − 2.5x4 − 1.5x5 − 10x6 − 0.5

5∑
i=1

x2
i ,

gi(x) = xi ⩾ 0, i = 1, 2, . . . , 5,

gi+5(x) = 1− xi ⩾ 0, i = 1, 2, . . . , 5,

g11(x) = x6 ⩾ 0,

g12(x) = 6.5− 6x1 − 3x2 − 3x3 − 2x4 − x5 ⩾ 0,

g13(x) = 20− 10x1 − 10x3 − x6 ⩾ 0.

The best known optimal feasible solution is f(x∗) = −213.

Results The results showcase that UPSO-QP outperforms all other evolution-
ary baselines and always converges to the optimal solution faster (cf. Fig. 1, 2).
Moreover compared to SLSQP and IPopt, UPSO-QP is able to achieve the same
level of accuracy while also having comparable total wall time measurements.

4.2 Constrained Optimization with Noisy Functions Values

In this section, we will solve the same problems as above but we will add noise
in different ways to showcase the robustness of UPSO-QP.
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Fig. 1: Results for Problem 1. Solid lines are the median over 20 replicates and
the shaded regions are the regions between the 5-th and 95-th percentiles.
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Fig. 2: Results for Problem 2. Solid lines are the median over 20 replicates and
the shaded regions are the regions between the 5-th and 95-th percentiles.

Impact of noise The impact of imprecise information with respect to the
values of the objective or constraint function can be studied and analyzed by
simulating the imprecise values using, for instance, the following approach [20,
22]. Information about the function values is obtained in the form of fη(x)
which determines an approximation to the true function value of the objective
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function f(x), contaminated by a small amount of noise η. To this end, the
function values are obtained, for the case of the additive noise, as follows [8, p.40]:
fη(x) = f(x) + η. For the case of the multiplicative noise, the function values
are obtained as follows: fη(x) = f(x)(1 + η) , where η is a Gaussian noise term
with zero mean and standard deviation σ, η ∼ N

(
0, σ2

)
, that determines the

noise strength.

Experiments In order to showcase the effectiveness of UPSO-QP, we run each
algorithm/problem pair with different noise settings: 3 noise levels for additive
noise and 3 noise levels for multiplicative noise. For each problem, we select
different levels in order for the noise to have an effect in performance. We also
inject noise in both the objective functions and all the constraint functions. For
each distinct scenario we run 20 replicates with different initial conditions. The
results showcase that UPSO-QP is clearly outperforming all the other evolution-
ary algorithms and SLSQP (cf. Fig. 3, 4, 5, 6). Moreover, UPSO-QP performs
as par with Ipopt in most cases and outperforms it in scenarios with big noise.
We used the same hyper-parameters as in the previous section.
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Fig. 3: Problem 1 with additive noise. Solid lines are the median over 20 replicates
and the shaded regions are the regions between the 5-th and 95-th percentiles.

4.3 Evaluation on High Dimensional Problems

In this section, we will highlight the effectiveness of UPSO-QP in high dimen-
sional and realistic examples. In particular, we will use two examples of the Tra-
jectory Optimization (or Optimal Control) problem (TO) [10, 16, 26, 28]. This
type of problems tend to be quite high dimensional while also having many con-
straints and being sensitive to good initialization. The simplest formulation of
TO problems is defined as:
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Fig. 4: Problem 1 with multiplicative noise. Solid lines are the median over 20
replicates and the shaded regions are the regions between the 5-th and 95-th
percentiles.
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Fig. 5: Problem 2 with additive noise. Solid lines are the median over 20 replicates
and the shaded regions are the regions between the 5-th and 95-th percentiles.

argmin
s1,...,sL,u1,...,,uL−1

L−1∑
l

C(sl,ul) + Cfinal(sL),

s.t. Dyn(sl,ul, sl,ul+1) = 0, (11)

where sl is the state at time l, ul is the action taken at time l, C(·, ·), Cfinal(·)
define the cost functions, while Dyn(·) defines the dynamics equations of the
system. We can additionally add more constraints depending on the problem
(e.g. bounds on the variables). In essence, the above formulation assumes that we
discretize the continuous signal at L points and enforcement all the constraints
only at those points. More advanced formulations assume piece-wise polynomials
and enforce the constraints on arbitrary points [28,29]. Overall, the optimization
searches for the states and actions that respect the dynamics equations and
minimize the costs.
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Fig. 6: Problem 2 with multiplicative noise. Solid lines are the median over 20
replicates and the shaded regions are the regions between the 5-th and 95-th
percentiles.

Double Integrator The first example that we will use is the Double Integrator
(DI) system [23]. The DI’s state is defined as s = {x, ẋ} ∈ R2, while the actions
are defined as u = {ẍ} ∈ R. The dynamics equations of motion are given by:

sl+1 =

[
1 dt

0 1

]
sl +

[
1
2dt

2

dt

]
ul, (12)
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Fig. 7: Double Integrator Re-
sults. Solid lines are the me-
dian over 20 replicates and the
shaded regions are the regions
between the 5-th and 95-th per-
centiles.

where dt is the time-step of integration in
seconds. In this particular setup, the system
starts at s1 = {1, 0} and has to reach at
sL = {0, 0} while minimizing the magnitude
of the actions taken. Cfinal(sl) = 1

2s
⊤
l sl, and

C(sl,ul) = Cfinal(sl) +
1
2 0.1u

⊤
l ul. We use

dt = 0.1 and L = 51 steps. The total dimen-
sions of the optimization variables is 151 (i.e.
x ∈ R151), while the total number of equal-
ity constraints are 102 (i.e. h(·) ∈ R102). We
will use this example to compare UPSO-QP
to other evolutionary methods. The results
showcase that UPSO-QP is able to solve the
problem and converge rapidly to the optimal
solution, while the other evolutionary base-
lines struggle at finding a good solution (cf.
Fig. 7). This is mainly because of the dimen-
sionality of problem and we would need to
perform an extensive hyper-parameter search
to make them competitive. On the contrary,
UPSO-QP is able to take advantage of the lo-
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cal linearizations in the search space and converge quickly to the optimal value.
We used the same hyper-parameters as in the previous section.

Monopod Locomotion Here we take one example of TO for legged locomo-
tion, where the task is to generate an effective gait for a monopod robot walking
on flat terrain (cf. Fig. 8). We follow the formulation of Winkler et al. [29] and:

a) Model the robot as a single rigid body mass with a leg that its mass is
negligible;

b) Adopt Winkler et al. [29] phase-based formulation for contact switching;
c) Parameterize the body pose, foot positions and foot forces with multiple

Hermite cubic polynomials.

Overall, we have the following optimization problem (omitting the cubic poly-
nomials for clarity):

find r(t), r : R → R3, (Body positions)

θ(t), θ : R → R3, (Body Euler angles)

p(t), p : R → R3, (Foot position)

f(t), f : R → R3, (Foot force)

s.t. srbd(r,θ,p,f) = {r̈, θ̈}, (Dynamics)

{r(0),θ(0)} = {rinit,θinit}, (Initial State)

{r(T ),θ(T )} = {rgoal,θgoal}, (Goal State)

p(t) ∈ B
(
r(t),θ(t)

)
, (Bounds wrt body)

ṗ(t) = 0, for t ∈ Contact, (No slip)

p(t) ∈ T , for t ∈ Contact, (Contact on terrain)

f(t) ∈ F , for t ∈ Contact, (Pushing force/friction cone)

f(t) = 0, for t /∈ Contact, (No force in air) (13)

In this particular setup, the monopod starts at pose r(0) = {0, 0, 0.5}, θ(0) = 0,
and has to reach r(T ) = {1, 0, 0.5}, θ(T ) = 0 in T = 2 s, while it is allowed
for 3 swing phases (foot in the air). The total dimensions of the optimization
variables is 339 (i.e. x ∈ R339). The total number of equality constraints are 291
(i.e. h(·) ∈ R291), and the total number of inequality constraints are 225 (i.e.
g(·) ∈ R225). We will use this example to compare against Ipopt and evaluate
whether UPSO-QP can be more robust to the initial solution guess. Here for
UPSO-QP we used M = 400 particles, with 20 neighborhoods, χ = 0.729, c1 =
c2 = 2.05, u = 0.5, rqp = 0.005 and αqp = 1.

The problem we are trying to solve in this section is highly non-linear, non-
convex with many “bad” local optima that the optimization can be trapped
around and not able to get away. For this reason and in order to test the ro-
bustness of the algorithms to the initial solution guess, we take a well-shaped
initialization and add to each variable Gaussian noise η ∼ N

(
0, σ2

)
. We vary σ

from 0 to 1. This way we can have a meaningful comparison, while also getting
reasonable convergence. We ran 10 replicates per experiment with different ini-
tialization parameters. The results showcase that both algorithms are able to find
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Fig. 8: Monopod: an example solution using UPSO-QP. The shaded “ghost”
robot is the target. The visualizations (1-7) are snapshots at time intervals. A
video of the optimized behavior is available at https://youtu.be/ZnDs8wc96eM.

the optimal solution (cf. Fig. 8) 100% of the time up to perturbation of σ = 0.7.
For σ = 0.8 and σ = 0.9, UPSO-QP is always able to find the optimal solution,
while Ipopt struggles and does not find the solution even after 5000 iterations.
For σ = 1, UPSO-QP rarely (1/10 runs) finds the optimal solution before 2000
iterations. The results verify that UPSO-QP keeps the effectiveness of numerical
optimization methods, while being more robust to bad initialization.

5 Concluding Remarks

We have proposed UPSO-QP, a novel algorithm that effectively combines the
evolutionary and numerical optimization literature, and solves general COPs.
UPSO-QP is able to keep convergence rates/wall-time similar to the analytical
methods, while being robust to noisy measurements and bad initialization similar
to EAs. Overall, UPSO-QP is getting the “best of both of worlds”. There needs to
be more investigation in which problems/scenarios the effect of the linearization
part of Eq. (8) is dominant, and in which ones the PSO part dominates.
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